This paper deals with the reflection and transmission of P-waves at a very rough interface between two isotropic elastic solids. The interface is assumed to oscillate between two straight lines. By mean of homogenization, this problem is reduced to the reflection and transmission of P-waves through an inhomogeneous orthotropic elastic layer. It is shown that a P incident wave always creates two reflected waves (one P wave and one SV wave), however, there may exist two, one or no transmitted waves. Expressions in closed-form of the reflection and transmission coefficient have been derived using the transfer matrix of an orthotropic elastic layer. Some numerical examples are carried out to examine the reflection and transmission of P-waves at a very rough interface of tooth-comb type, tooth-saw type and sin type. It is found numerically that the reflection and transmission coefficients depend strongly on the incident angle, the incident wave frequency, the roughness and the type of interfaces.