scholarly journals Quantized Feedback Control Design of Nonlinear Large-Scale Systems via Decentralized Adaptive Integral Sliding Mode Control

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yan-Mei Xue ◽  
Bo-Chao Zheng ◽  
Dan Ye

A novel decentralized adaptive integral sliding mode control law is proposed for a class of nonlinear uncertain large-scale systems subject to quantization mismatch between quantizer sensitivity parameters. Firstly, by applying linear matrix inequality techniques, integral-type sliding surface functions are derived for ensuring the stability of the whole sliding mode dynamics and obtaining the prescribed boundedL2gain performance. Secondly, the decentralized adaptive sliding mode control law is developed to ensure the reachability of the sliding manifolds in the presence of quantization mismatch, interconnected model uncertainties, and external disturbances. Finally, an example is shown to verify the validity of theoretical results.

Author(s):  
Chaouki Mnasri ◽  
Moncef Gasmi

LMI-based adaptive fuzzy integral sliding mode control of mismatched uncertain systems Integral sliding mode design is considered for a class of uncertain systems in the presence of mismatched uncertainties in both state and input matrices, as well as norm-bounded nonlinearities and external disturbances. A sufficient condition for the robust stability of the sliding manifold is derived by means of linear matrix inequalities. The initial existence of the sliding mode is guaranteed by the proposed control law. The improvement of the proposed control scheme performances, such as chattering elimination and estimation of norm bounds of uncertainties, is then considered with the application of an adaptive fuzzy integral sliding mode control law. The validity and efficiency of the proposed approaches are investigated through a sixth order uncertain mechanical system.


2016 ◽  
Vol 829 ◽  
pp. 123-127
Author(s):  
Van Van Huynh ◽  
Thao Phuong Thi Nguyen

In this paper, a new sliding mode control law is developed for a class of mismatched uncertain systems with more general exogenous disturbances. First, we derive a new existence condition of linear sliding surface in terms of strict linear matrix inequalities such that the reduce-order sliding mode dynamics is is asymptotically stable. Second, we propose an adaptive sliding mode control law such that the system states reach the sliding surface in finite time and stay on its thereafter. Final, a numerical example is used to demonstrate the efficacy of the proposed method.


1999 ◽  
Vol 121 (4) ◽  
pp. 708-713 ◽  
Author(s):  
Kou-Cheng Hsu

This paper presents a robust decentralized sliding mode control for large-scale systems with delays in the interconnection and series nonlinearities in the input. The proposed sliding mode control ensures the global reaching condition of the sliding mode of the composite system. Without using time-delayed interconnection terms in the local control input, the developed local sliding mode controller is really independent of coupling subsystem states. Furthermore, the sliding mode control law is improved from the point of view of control energy conservation.


2019 ◽  
Vol 15 (3) ◽  
pp. 155014771983357 ◽  
Author(s):  
Waqar Alam ◽  
Qudrat Khan ◽  
Raja Ali Riaz ◽  
Rini Akmeliawati

Diabetes mellitus is a persistent metabolic syndrome caused by impaired capability of the body’s production and usage of insulin. This impaired capability results in chronic hyperglycaemia, the elevated glucose concentration in the bloodstream, which may lead to many incurable complications. To escape this dire situation, a proper model-based exogenous infusion of insulin bolus is required, which is usually established via different feedback control strategies. In this article, the authors present a mathematical model–based robust integral sliding mode control approach for stabilization of internal glucose–insulin regulatory system in type-1 diabetic patient. Since the state variables of the system are not directly available to the controller, a uniform exact differentiator observer is employed to accomplish the aforementioned task. In the proposed control law, the incorporation of integral term in the switching manifold eliminates the reaching phase, which causes the sliding mode to establish from the very initial point, thus enhances the robustness property of the proposed control scheme. Moreover, the chattering problem is also substantially suppressed to a considerable extent along a defined manifold. To verify the theoretical analysis, the proposed control law is verified via computer simulations which demonstrate the effectiveness of the proposed control law against the external perturbations, that is, unannounced meal intake and physical exercise.


2020 ◽  
Vol 67 (10) ◽  
pp. 2084-2088
Author(s):  
Lei Wang ◽  
Zhuoyue Song ◽  
Xiangdong Liu ◽  
Zhen Li ◽  
Tyrone Fernando ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document