scholarly journals Investigations into the Biocompatibility of Nanohydroxyapatite Coated Magnetic Nanoparticles under Magnetic Situation

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Qing Li ◽  
Gang Zhou ◽  
Tong Wang ◽  
Yongzhao Hou ◽  
Xuliang Deng ◽  
...  

Regenerative medicine consisting of cells and materials offers a new approach for repairing and regenerating the organs and tissues. More and more researches focused on the magnetic nanobiomaterials due to its superior advantages to traditional materials. However, the toxicity of nanosized magnetic particles cannot be ignored, especially under the magnetic situation. This study aims to study the biocompatibility of nanohydroxyapatite (n-HA-) coated magnetic nanoparticles under the magnetic situation. n-HA-coated magnetic nanoparticles were fabricated through an ultrasound-assisted coprecipitation method. Subsequently, these materials were analyzed by transmission electron microscope (TEM) and X-ray diffraction (XRD) and then were cultured with mesenchyme stem cells derived from human bone marrow (hMSC-BM). In vitro experiment proved the satisfactory biocompatibility of n-HA-coated magnetic nanoparticles. These important factors (ALP, OCN, and OPN) influence the osteogenic differentiation of hMSC-BM. It was found that the hMSC-BM with combination of n-HA/Fe3O4and magnetic stimulation presented higher degree of osteoblast-related markers than that in each alone. This research demonstrated that a novel nanohydroxyapatite coated magnetic nanoparticle is safe under the magnetic situation. Therefore, these n-HA-coated magnetic nanoparticles are promising biomagnetic materials for future applications.

2015 ◽  
Vol 08 (05) ◽  
pp. 1550018 ◽  
Author(s):  
Shupeng Liu ◽  
Na Chen ◽  
Fufei Pang ◽  
Zhengyi Chen ◽  
Tingyun Wang

Purpose: This work focused on the investigation the hyperthermia performance of the carbon-coated magnetic particles (CCMPs) in laser-induced hyperthermia. Materials and methods: We prepared CCMPs using the organic carbonization method, and then characterized them with transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) spectrophotometry, vibrating sample magnetometer (VSM) and X-ray diffraction (XRD). In order to evaluate their performance in hyperthermia, the CCMPs were tested in laser-induced thermal therapy (LITT) experiments, in which we employed a fully distributed fiber Bragg grating (FBG) sensor to profile the tissue's dynamic temperature change under laser irradiation in real time. Results: The sizes of prepared CCMPs were about several micrometers, and the LITT results show that the tissue injected with the CCMPs absorbed more laser energy, and its temperature increased faster than the contrast tissue without CCMPs. Conclusions: The CCMPs may be of great help in hyperthermia applications.


2016 ◽  
Vol 16 (4) ◽  
pp. 4174-4179 ◽  
Author(s):  
Seniha Yolcular Özyüncü ◽  
Serap Teksöz ◽  
Çiğdem İçhedef ◽  
E. İlker Medine ◽  
Çığır Biray Avcı ◽  
...  

The aim of this study is to synthesize D-Penicillamine (D-PA) conjugated magnetic nanocarriers for targeted purposes. Magnetic nanoparticles were prepared by partial reduction method and surface modification was done with an amino silane coupling agent’s (structural properties), AEAPS, the particles were characterized by Scanning Electron Microscope (SEM), X-ray Diffraction (XRD). After that D-PA was linked with the magnetic nanoparticles (MNPs) and has been radiolabeled with [99mTc(CO)3]+ core. Quality controls of [99mTc(CO)3-MNP-D-PA] were established by Cd(Te) detector. The radiolabeling efficiency of magnetic nanoparticles ([99mTc(CO)3-MNP-D-PA]) was about 97.05% with good in vitro stability during the 24 hour period. As a parallel study, radiolabeled D-PA complex ([99mTc(CO)3-D-PA]) was prepared with a radiolabeling yield of 97.93%. At the end, biologic activities of binding complexes were investigated on MCF7 human breast cancer cells. Our results show that, radiolabeled magnetic nanoparticles with core [99mTc(CO)3]+ ([99mTc(CO)3-MNP-D-PA]) showed the highest uptake on MCF7 cells which were applied magnetic field in the wells. In that case, result of this study emphasizes that radiolabeled magnetic nanoparticles with core [99mTc(CO)3]+ would support new occurrences of new agents.


2016 ◽  
Vol 13 (10) ◽  
pp. 7408-7415
Author(s):  
Yongxing Li ◽  
Qiong Xiao ◽  
Qin Yin ◽  
Hui Ni ◽  
Yanbing Zhu ◽  
...  

Arylsulfatase, one of a few enzymes that can enhance the gelling strength of agar by cleaving the sulfate ester bonds in agar, was covalently immobilized with carboxyl functioned magnetic nanoparticles (CMNPs). The resultant CMNPs and immobilized arylsulfatase were characterized by transmission electron microscopy (TEM), Dynamic Light scattering (DLS), X-ray diffraction (XRD), vibrating sample magnetometry (VSM) and thermogravimetric analysis (TGA). The TEM result indicated that the CMNPs and immobilized arylsulfatase had a similar mean particle size of 10 nm. The arylsulfatase-CMNPs had a mean diameter of 1200 nm in aqueous solution determined by the DLS, which was much bigger than the CMNPs (433.6 nm). The different sizes demonstrated that the arylsulfatase was coated on CMNPs successfully. XRD showed that diffraction patterns of the CMNPs and arylsulfatase-CMNPs were close to the standard XRD pattern of Fe3O4. Saturation magnetizations were 52.1 emu/g for carriers and 47.9 emu/g for immobilized arylsulfatase, which indicated that the particles had superparamagnetic characteristics. The TGA revealed that the amount of arylsulfatase bound to the surface of CMNPs was 5.65%. The arylsulfatase exhibited better thermal stability and reusability after immobilization, the immobilized arylsulfatase can retain more than 50% enzyme activity up to the 9th cycle.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Pingting He ◽  
Jie Tao ◽  
Jianjun Xue ◽  
Yulan Chen

A homogeneous and transparent titania (TiO2) sol with nanosized anatase TiO2particles was prepared by hydrothermal synthesis method. The transmission electron microscope and X-ray diffraction were used to characterize the structure and morphology of particulates in the TiO2sol and purchased TiO2powder. The results show that the homogeneous anatase crystalline phase was formed and the size of the spindle-like particle in sol was about 20 nm in width and 150 nm in average length, and the particulates of the purchased powder were globular-like about 50 nm in diameter. In addition, a consistent set of in vitro experimental protocols was used to study the effects of nano-TiO2sol as prepared and nano-TiO2powder on mouse peritoneal macrophage. The cytotoxicity tests in vitro indicate that, with the increasing of TiO2sol concentration contaminated with the cells, the relative proliferation rate of macrophage cells was improved slightly after the cells contaminated for 24 h, but it reduced rapidly after contaminated for 48 h. The purchased nano-TiO2powder inhibited the growth of the cells obviously as cultivating with macrophage both for 24 h and 48 h.


MRS Advances ◽  
2017 ◽  
Vol 2 (49) ◽  
pp. 2769-2773
Author(s):  
Morales P. Patricio ◽  
Moncayo H. José María ◽  
García R. Miguel ◽  
Santoyo S. Jaime

ABSTRACTMagnetic nanoparticles were obtained by chemical coprecipitation technique from aqueous solutions of iron salts, the synthesis was carried out in an alkaline medium, obtaining magnetic nanoparticles of around 2-10 nm in size. The nanoparticles obtained were stabilized with polyvinylpirrolidone (PVP), the particle size was measured by transmission electron microscopy (TEM), the crystal structure of the magnetic nanoparticles obtained was verified by X-ray diffraction (DRX). The chemical composition of the nanoparticles powder was investigated using electron scanning microscope with energy dispersive X-ray spectroscopy (EDX) equipment. Optical properties as absorption was studied by UV-Vis spectroscopy.


2014 ◽  
Vol 1053 ◽  
pp. 444-449
Author(s):  
Xue Wen Cui ◽  
Gang Cheng ◽  
Rui Jiang Liu ◽  
Li Wei Wang ◽  
Yan Shuai Wang

The magnetic Fe2O3 nanoparticles were prepared by co-precipitation method with FeCl3 and NaOH as starting reagents. The surface of Fe2O3 nanoparticles was modified with tetraethyl orthosilicate. Fe2O3@SiO2 nanocomposites were calcined at 600 °C. The nanocomposites were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The PLL-Fe2O3@SiO2 (SMNP) was prepared by modifying with poly-L-lysine on the surface. The SMNP combined with plasmid siRNA by static electrical charges as one of gene carriers was transfected into SD rat neurons. The results of fluorescence microscope and Prussian blue staining show that SMNP can effectively enter cells. Therefore, SMNP are one kind of novel and effective gene carriers, it can transfect the plasmid which carries the siRNA into SD rats neurons in vitro.


2019 ◽  
Vol 13 (02) ◽  
pp. 2050001 ◽  
Author(s):  
Huiping Shao ◽  
Luhui Wang ◽  
Tao Lin ◽  
Yumeng Zhang ◽  
Zhinan Zhang

Fe3O4@chitosan (CS)@Gefitinib (GFTN) core-shell structure composite magnetic nanoparticles (NPs) were prepared by chemical coprecipitation method in this study. In addition, protamine was doped in Fe3O4 cores to prepare Fe3O4@protamine@CS@GFTN core-shell structure composite NPs, in order to increase the loading of GFTN in composite NPs. They were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and spectrophotometer. The results show that the average size of Fe3O4@CS@GFTN and Fe3O4@protamine@CS@GFTN composite NPs is approximately 19 and 21[Formula: see text]nm, respectively. The saturation magnetizations of composite magnetic NPs and corresponding magnetic fluids are 57.20, 20.79, 59.58 and 19.75[Formula: see text]emu/g, respectively. The loading of GFTN in composite NPs was measured by a spectrophotometer to be about 13.5% and 27.6%, respectively. The addition of protamine increased the loading of GFTN two times, indicating that it will play an important role in the management of lung diseases.


2020 ◽  
pp. 089270572091278 ◽  
Author(s):  
Reem Al-Wafi ◽  
SF Mansour ◽  
MK Ahmed

Electrospun nanofibrous scaffolds containing co-dopant of Sr/Se into carbonated hydroxyapatite has been synthesized in situ with graphene (G) nanosheets and carried on polycaprolactone at different contributions of G. The powder and the nanofibrous samples were investigated using X-ray diffraction, transmission electron microscopy, and field emission scanning electron microscopy (FESEM). The FESEM micrographs show that the highest content of G (0.2 G) was formed in non-oriented/rough/cracked fibers with diameters around 0.3–0.4 µm at the maximum. The tensile strength of nanofibrous scaffolds was improved with the addition of G nanosheets and the maximum tensile strength of 0.2 G was around 6.39 ± 0.24 MPa, while the minimum cell viability ratio was about 94.4 ± 3.2% for the free G nanofibers. The in vitro attachment of HFB4 cell lines was investigated and it showed that nanofibrous scaffolds have induced cells to be proliferated and spread on the nanofibrous scaffolds’ surface. This behavior of cells growth encourages more investigations for these nanofibrous scaffolds to be promoted for clinical applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hajar Q. Alijani ◽  
Siavash Iravani ◽  
Shahram Pourseyedi ◽  
Masoud Torkzadeh-Mahani ◽  
Mahmood Barani ◽  
...  

AbstractGreener methods for the synthesis of various nanostructures with well-organized characteristics and biomedical applicability have demonstrated several advantages, including simplicity, low toxicity, cost-effectiveness, and eco-friendliness. Spinel nickel ferrite (NiFe2O4) nanowhiskers with rod-like structures were synthesized using a simple and green method; these nanostructures were evaluated by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, and X-ray energy diffraction spectroscopy. Additionally, the prepared nanowhiskers could significantly reduce the survival of Leishmania major promastigotes, at a concentration of 500 μg/mL; the survival of promastigotes was reduced to ≃ 26%. According to the results obtained from MTT test (in vitro), it can be proposed that further studies should be conducted to evaluate anti-leishmaniasis activity of these types of nanowhiskers in animal models.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4497
Author(s):  
Beatriz S. Afonso ◽  
Ana G. Azevedo ◽  
Catarina Gonçalves ◽  
Isabel R. Amado ◽  
Eugénio C. Ferreira ◽  
...  

β-carotene loaded bio-based nanoparticles (NPs) were produced by the solvent-displacement method using two polymers: zein and ethylcellulose. The production of NPs was optimised through an experimental design and characterised in terms of average size and polydispersity index. The processing conditions that allowed to obtain NPs (<100 nm) were used for β-carotene encapsulation. Then β-carotene loaded NPs were characterised in terms of zeta potential and encapsulation efficiency. Transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction analysis were performed for further morphological and chemical characterisation. In the end, a static in vitro digestion following the INFOGEST protocol was performed and the bioaccessibility of β-carotene encapsulated in both NPs was determined. Results show that the best conditions for a size-controlled production with a narrow size distribution are lower polymer concentrations and higher antisolvent concentrations. The encapsulation of β-carotene in ethylcellulose NPs resulted in nanoparticles with a mean average size of 60 ± 9 nm and encapsulation efficiency of 74 ± 2%. β-carotene loaded zein-based NPs resulted in a mean size of 83 ± 8 nm and encapsulation efficiency of 93 ± 4%. Results obtained from the in vitro digestion showed that β-carotene bioaccessibility when encapsulated in zein NPs is 37 ± 1%, which is higher than the value of 8.3 ± 0.1% obtained for the ethylcellulose NPs.


Sign in / Sign up

Export Citation Format

Share Document