scholarly journals Stability Evaluation on Surrounding Rocks of Underground Powerhouse Based on Microseismic Monitoring

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Feng Dai ◽  
Biao Li ◽  
Nuwen Xu ◽  
Yongguo Zhu ◽  
Peiwei Xiao

To study the stability of underground powerhouse at Houziyan hydropower station during excavation, a microseismic monitoring system is adopted. Based on the space-time distribution characteristics of microseismic events during excavation of the main powerhouse, the correlation between microseismic events and blasting construction is established; and the microseismic clustering areas of the underground powerhouse are identified and delineated. The FLAC3D code is used to simulate the deformation of main powerhouse. The simulated deformation characteristics are consistent with that recorded by microseismic monitoring. Finally, the correlation between the macroscopic deformation of surrounding rock mass and microseismic activities is also revealed. The results show that multiple faults between 1# and 3# bus tunnels are activated during excavation of floors V and VI of the main powerhouse. The comprehensive method combining microseismic monitoring with numerical simulation as well as routine monitoring can provide an effective way to evaluate the surrounding rock mass stability of underground caverns.

2013 ◽  
Vol 838-841 ◽  
pp. 889-893
Author(s):  
Biao Li ◽  
Feng Dai ◽  
Nu Wen Xu ◽  
Chun Sha

The right bank underground powerhouse of Houziyan hydropower station is a typical deep-buried type with high geostress and complicated geological conditions. To monitor and analyze the stability of surrounding rock mass during continuous excavation of the powerhouse excavation and locate the potential failure zones, an ESG (Engineering Seismology Group) microseismic monitoring system manufactured in Canada was installed in April, 2013. The wave velocity of the monitoring system was determined through fixed blasting tests. And the average location error is the minimum while P-wave velocity is 5700m/s, less than 10m and meeting the system request. By combining the temporal and spatial distribution regularity of microseimic events with field excavation, micro-crack clusters and potential instability zones were identified and delineated. The results will provide a reference for later excavations and supports of the underground powerhouse. Furthermore, a new monitoring method can also be supplied for the stability analysis of surrounding rock mass in deep-buried underground powerhouses.


2010 ◽  
Vol 44-47 ◽  
pp. 1189-1192
Author(s):  
Zhong Chang Wang

The rose diagram of joint is generalized by grouping the attitude of disclosed discontinuous faces in detecting cavern and measuring point coordinate. The search of movable and key blocks of surrounding rock mass for underground powerhouse is implemented, the combinations of discontinuous faces and sliding faces, the location and the parameter of stability of movable and key blocks are obtained by used of the method of stereographic projection and vector analysis of the block theory. It is shown that the numbers of movable and key blocks in the location of downriver right side wall and vault are larger than those in other location owing to numerous discontinuous faces, and the faults of F34 and F33 play a main role in the stability of movable and key blocks. The guidance for excavation and reinforce of underground caverns is provided.


Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 327
Author(s):  
Zhiyong Zhang ◽  
Diego Arosio ◽  
Azadeh Hojat ◽  
Luigi Zanzi

To monitor the stability of a mountain slope in northern Italy, microseismic monitoring technique has been used since 2013. Locating microseismic events is a basic step of this technique. We performed a seismic tomographic survey on the mountain surface above the rock face to obtain a reliable velocity distribution in the rock mass for the localization procedure. Seismic travel-time inversion showed high heterogeneity of the rock mass with strong contrast in velocity distribution. Low velocities were found at shallow depth on the top of the rock cliff and intermediate velocities were observed in the most critical area of the rock face corresponding to a partially detached pillar. Using the 3D velocity model obtained from inversion, localization tests were performed based on the Equal Differential Time (EDT) localization method. The results showed hypocenter misfits to be around 15 m for the five geophones of the microseismic network and the error was significantly decreased compared to the results produced by a constant velocity model. Although the localization errors are relatively large, the accuracy is sufficient to distinguish microseismic events occurring in the most critical zone of the monitored rock mass from microseismic events generated far away. Thus, the 3D velocity model will be used in future studies to improve the classification of the recorded events.


2013 ◽  
Vol 838-841 ◽  
pp. 878-882
Author(s):  
Xiao Gang He ◽  
Feng Dai ◽  
Nu Wen Xu ◽  
Chun Sha

The underground powerhouse of Houziyan hydropower station has some typical characteristics such as high strata stress, large span and high sidewalls. In this paper, numerical simulation of continuous excavation and support of the underground caverns was performed using the Fast Lagrangian Analysis of Continuum method (FLAC3D). Then, the distribution characteristic of the deformation field, stress field and plastic zones was analyzed based on the numerical calculation results. In addition, the distribution of stress was compared with microseismic events. It shows that stress concentration can cause micro-seismic events regional aggregation.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Peiwei Xiao ◽  
Bo Qian ◽  
Peng Jiang ◽  
Nuwen Xu ◽  
Biao Li

The macroscopic deformation and failure of engineering rock mass may occur as a result of evolution and breakdown of its internal microfracture. Therefore, the macroscopic state of rock mass can be obtained from fracture scale of microfracture in real time. To assess instability and predict macroscopic deformation and failure of engineering rock mass, a time-frequency analysis technique based on S transform was proposed to investigate microseismic waveform and reveal the correlation between macroscopic deformation failure and microseismic frequency characteristics of engineering rock mass in combination with fracture scale. To minimize the influence of external factors on parameters calculated, a significant amount of microseismic data from three large-scale hydropower projects in southwestern China was collected as the statistical sample. The analysis of correlation between fracture scale and frequency characteristics of microseismic events was carried out based on the statistical sample. Combining with microseismic data and multipoint extensometers in the underground powerhouse of the Houziyan hydropower station, engineering verification was conducted. The result shows that the high-frequency components decrease and microseismic signals display low-frequency characteristic as the fracture scale increases; the microseismic high-frequency components decreased at first and then increased during the deformation process of surrounding rock mass, and the frequency of microseismic events shifts from high band to a lower one before deformation.


2021 ◽  
Vol 12 (1) ◽  
pp. 149
Author(s):  
Xiang Zhou ◽  
Biao Li ◽  
Chunming Yang ◽  
Weiming Zhong ◽  
Quanfu Ding ◽  
...  

The diversion tunnel of a hydropower station is characterized by low quality surrounding rock and weak structural planes. During excavation, rock mass spalling and cracking frequently occur. To evaluate the stability of a rock mass during tunnel excavation, high-precision microseismic monitoring technology was introduced to carry out real-time monitoring. Based on the temporal and spatial distribution characteristics of microseismic events, the main damage areas and their influencing factors of tunnel rock mass were studied. By analyzing the source characteristic parameters of the concentration area of microseismic activities, the rock fracture mechanism of the concentration area was revealed. The 3D numerical model of diversion tunnel was established, and the deformation characteristics of the rock mass under the control of different combination types of weak structural planes were obtained. The results showed that the microseismic event was active between 29 October 2020 and 6 November 2020, and the energy release increased sharply. The main damage areas of the rock mass were located at Stakes K0 + 500–K0 + 600 m. Microseismic source parameters revealed that shear failure or fault-slip failure induced by geological structures had an important influence on the stability of the surrounding rock. The numerical simulation results were consistent with the microseismic monitoring results and indicated that among the three kinds of structural plane combination types, including “upright triangle”, “inverted triangle” and “nearly parallel”, the “upright triangle” structure had the most significant influence on the stability of the surrounding rock. In addition, the maximum displacement of the surrounding rock had a trend of lateral migration to the larger dip angle in the three combined structural plane types. The research results will provide significant references for the safety evaluation and construction design of similar tunnels.


2022 ◽  
Vol 8 (1) ◽  
pp. 81-91
Author(s):  
Dang Van Kien ◽  
Do Ngoc Anh ◽  
Do Ngoc Thai

Geotechnical problems are complicated to the extent and cannot be expected in other areas since non-uniformities of existing discontinuous, pores in materials and various properties of the components. At present, it is extremely difficult to develop a program for tunnel analysis that considers all complicated factors. However, tunnel analysis has made remarkable growth for the past several years due to the development of numerical analysis method and computer development, given the situation that it was difficult to solve formula of elasticity, viscoelasticity, and plasticity for the dynamic feature of the ground when the constituent laws, yielding conditions of ground materials, geometrical shape and boundary conditions of the structure were simulated in the past. The stability of rock mass around an underground large cavern is the key to the construction of large-scale underground projects. In this paper, the stability analysis was carried out based on those parameters by using 2D FEM RS2 program. The calculated stress and displacements of surrounding rock and rock support by FEM analysis were compared with those allowable values. The pattern of deformation, stress state, and the distribution of plastic areas are analyzed. Finally, the whole stability of surrounding rock mass of underground caverns was evaluated by Rock Science - RS2 software. The calculated axial forces were far below design capacity of rock bolts. The strong rock mass strength and high horizontal to vertical stress ratio enhanced safe working conditions throughout the excavation period. Thus wide span caverns and the system of caverns could be stability excavated sedimentary rock during the underground cavern and the system of caverns excavation by blasting method. The new method provides a reliable way to analyze the stability of the caverns and the system of caverns and also will help to design or optimize the subsequent support. Doi: 10.28991/CEJ-2022-08-01-06 Full Text: PDF


2013 ◽  
Vol 405-408 ◽  
pp. 402-405 ◽  
Author(s):  
Yun Jie Zhang ◽  
Tao Xu ◽  
Qiang Xu ◽  
Lin Bu

Based on the fluid-solid coupling theory, we study the stability of surrounding rock mass around underground oil storage in Huangdao, Shandong province, analyze the stress of the surrounding rock mass around three chambers and the displacement change of several key monitoring points after excavation and evaluate the stability of surrounding rock mass using COMSOL Multiphysics software. Research results show that the stress at both sides of the straight wall of cavern increases, especially obvious stress concentration forms at the corners of the cavern, and the surrounding rock mass moves towards the cavern after excavation. The stress and displacement of the surrounding rock mass will increase accordingly after setting the water curtains, but the change does not have a substantive impact on the stability of surrounding rock mass.


2015 ◽  
Vol 777 ◽  
pp. 8-12 ◽  
Author(s):  
Lin Zhen Cai ◽  
Cheng Liang Zhang

HuJiaDi tunnel construction of Dai Gong highway is troublesome, the surrounding-rock mass give priority to full to strong weathering basalt, surrounding rock integrity is poor, weak self-stability of surrounding rock, and tunnel is prone to collapse. In order to reduce disturbance, taking advantage of the ability of rock mass, excavation adopt the method of "more steps, short footage and strong support". The excavation method using three steps excavation, The excavation footage is about 1.2 ~ 1.5 m; The surrounding rock bolting system still produce a large deformation after completion of the first support construction, it shows that the adopted support intensity cannot guarantee the stability of the tunnel engineering. Using ABAQUS to simulate tunnel excavation support, optimizing the support parameters of the tunnel, conducting comparative analysis with Monitoring and Measuring and numerical simulation results, it shows that the displacement - time curves have a certain consistency in numerical simulation of ABAQUS and Monitoring and Measuring.


2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


Sign in / Sign up

Export Citation Format

Share Document