Analysis of Effect of Heat Pipe Parameters in Minimising the Entropy Generation Rate
Heat transfer and fluid flow in the heat pipe system result in thermodynamic irreversibility generating entropy. The minimum entropy generation principle can be used for optimum design of flat heat pipe. The objective of the present work is to minimise the total entropy generation rate as the objective function with different parameters of the flat heat pipe subjected to some constraints. These constraints constitute the limitations on the heat transport capacity of the heat pipe. This physical nonlinear programming problem with nonlinear constraints is solved using LINGO 15.0 software, which enables finding optimum values for the independent design variables for which entropy generation is minimum. The effect of heat load, length, and sink temperature on design variables and corresponding entropy generation is studied. The second law analysis using minimum entropy generation principle is found to be effective in designing performance enhanced heat pipe.