scholarly journals Terrestrial Water Storage Changes of Permafrost in the Three-River Source Region of the Tibetan Plateau, China

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Min Xu ◽  
Shichang Kang ◽  
Qiudong Zhao ◽  
Jiazhen Li

Changes in permafrost influence water balance exchanges in watersheds of cryosphere. Water storage change (WSC) is an important factor in water cycle. We used Gravity Recovery and Climate Experiment (GRACE) satellite data to retrieve WSC in the Three-River Source Region and subregions. WSC in four types of permafrost (continuous, seasonal, island, and patchy permafrost) was analyzed during 2003–2010. The result showed that WSC had significant change; it increased by9.06±0.01 mm/a (21.89±0.02×109 m3) over the Three-River Source Region during the study period. The most significant changes of WSC were in continuous permafrost zone, with a total amount of about13.94±0.48×109 m3. The spatial distribution of WSC was in state of gain in the continuous permafrost zone, whereas it was in a state of loss in the other permafrost zones. Little changes of precipitation and runoff occurred in study area, but the WSC increased significantly, according to water balance equation, the changes of runoff and water storage were subtracted from changes of precipitation, and the result showed that changes of evaporation is minus which means the evaporation decreased in the Three-River Source Region during 2003–2010.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Min Xu

Changes in permafrost and glaciers influence water balance in mountain regions of arid northwest China. Terrestrial water storage change (TWSC) is an important factor in the water cycle. In this study, we used Gravity Recovery and Climate Experiment (GRACE) satellites data to retrieve the TWSC in Tien Shan and Qi Lian Mountains. Variation of seasonal TWSC was obvious. However, the seasonal and annual differences reflected the imbalance of water resource distribution in two mountains. The TWSC decreased in the Tien Shan Mountains but increased in the Qi Lian Mountains during 2003 to 2010. Permafrost and glaciers play an important role in the water cycle in arid mountain regions. Demands for water for agriculture need more groundwater extraction for irrigation and glacial melt feeding the rivers which leads to the state of loss of TWSC in Tien Shan Mountains. Increase and thickening of the active layer of permafrost could lead to more infiltration of surface water into the groundwater, which result in increasing water storage and changes in the regional water balance. According to water balance, precipitation and evaporation changed little in short time, and TWSC changed obviously, whereas runoff showed an increasing trend in the Tien Shan Mountains and a decreasing trend in the Qi Lian Mountains.


2010 ◽  
Vol 11 (1) ◽  
pp. 156-170 ◽  
Author(s):  
Qiuhong Tang ◽  
Huilin Gao ◽  
Pat Yeh ◽  
Taikan Oki ◽  
Fengge Su ◽  
...  

Abstract Terrestrial water storage (TWS) is a fundamental component of the water cycle. On a regional scale, measurements of terrestrial water storage change (TWSC) are extremely scarce at any time scale. This study investigates the feasibility of estimating monthly-to-seasonal variations of regional TWSC from modeling and a combination of satellite and in situ surface observations based on water balance computations that use ground-based precipitation observations in both cases. The study area is the Klamath and Sacramento River drainage basins in the western United States (total area of about 110 000 km2). The TWSC from the satellite/surface observation–based estimates is compared with model results and land water storage from the Gravity Recovery and Climate Experiment (GRACE) data. The results show that long-term evapotranspiration estimates and runoff measurements generally balance with observed precipitation, suggesting that the evapotranspiration estimates have relatively small bias for long averaging times. Observations show that storage change in water management reservoirs is about 12% of the seasonal amplitude of the TWSC cycle, but it can be up to 30% at the subbasin scale. Comparing with predevelopment conditions, the satellite/surface observation–based estimates show larger evapotranspiration and smaller runoff than do modeling estimates, suggesting extensive anthropogenic alteration of TWSC in the study area. Comparison of satellite/surface observation–based and GRACE TWSC shows that the seasonal cycle of terrestrial water storage is substantially underestimated by GRACE.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Dong Jiang ◽  
Jianhua Wang ◽  
Yaohuan Huang ◽  
Kang Zhou ◽  
Xiangyi Ding ◽  
...  

The Gravity Recovery and Climate Experiment (GRACE) satellite provides a new method for terrestrial hydrology research, which can be used for improving the monitoring result of the spatial and temporal changes of water cycle at large scale quickly. The paper presents a review of recent applications of GRACE data in terrestrial hydrology monitoring. Firstly, the scientific GRACE dataset is briefly introduced. Recently main applications of GRACE data in terrestrial hydrological monitoring at large scale, including terrestrial water storage change evaluation, hydrological components of groundwater and evapotranspiration (ET) retrieving, droughts analysis, and glacier response of global change, are described. Both advantages and limitations of GRACE data applications are then discussed. Recommendations for further research of the terrestrial water monitoring based on GRACE data are also proposed.


2020 ◽  
Vol 33 (2) ◽  
pp. 511-525 ◽  
Author(s):  
Shanshan Deng ◽  
Suxia Liu ◽  
Xingguo Mo

AbstractTerrestrial water storage change (TWSC) plays a crucial role in the hydrological cycle and climate system. To date, methods including 1) the terrestrial water balance method (PER), 2) the combined atmospheric and terrestrial water balance method (AT), and 3) the summation method (SS) have been developed to estimate TWSC, but the accuracy of these methods has not been systematically compared. This paper compares the spatial and temporal differences of the TWSC estimates by the three methods comprehensively with the GRACE data during the 2002–13 period. To avoid the impact of different inputs in the comparison, three advanced reanalysis datasets are used, namely 1) the National Centers for Environmental Prediction (NCEP)–Department of Energy (DOE) Reanalysis II (NCEP R2), 2) the ECMWF interim reanalysis (ERA-Interim), and 3) the Japanese 55-Year Reanalysis (JRA-55). The results show that all estimates with PER and AT considerably overestimate the long-term mean on a regional scale because the data assimilation in the reanalysis opens the water budget. The difficulty of atmospheric observation and simulation in arid and polar tundra regions is the documented reason for the failure of the AT method to represent the TWSC phase over 30% of the region found in this study. Although the SS result exhibited the best overall agreement with GRACE, the amplitude of TWSC based on SS differed substantially from that of GRACE and the similarity coefficient of the global distribution between the SS-derived estimate and GRACE is still not high. More detailed considerations of groundwater and human activities, for example, irrigation and reservoir impoundments, can help SS to achieve a higher accuracy.


Author(s):  
J. Huang ◽  
Q. Zhou

Water is essential for human survival and well-being, and important to virtually all sectors of the economy. In the aridzone of China’s west, water resource is the controlling factor on the distribution of human settlements. Water cycle variation is sensitive to temperature and precipitation, which are influenced by human activity and climate change. Satellite observations of Earth’s time-variable gravity field from the Gravity Recovery and Climate Experiment (GRACE) mission, which enable direct measurement of changes of total terrestrial water storage, could be useful to aid this modelling. In this pilot study, TWS change from 2002 to 2013 obtained from GRACE satellite mission over the Kaidu River Basin in Xinjiang, China is presented. Precipitation and temperature data from in-situ station and National Satellite Meteorological Centre of China (NSMC) are analysed to examine whether there is a statistically significant correlation between them.


2020 ◽  
Vol 12 (19) ◽  
pp. 3129
Author(s):  
Yao Jia ◽  
Huimin Lei ◽  
Hanbo Yang ◽  
Qingfang Hu

The Tibetan Plateau (TP) is referred to as the water tower of Asia, where water storage and precipitation have huge impacts on most major Asian rivers. Based on gravity recovery and climate experiment data, this study analyzed the terrestrial water storage (TWS) changes and estimated areal precipitation based on the water balance equation in four different basins, namely, the upper Yellow River (UYE), the upper Yangtze River (UYA), the Yarlung Zangbo River (YZ), and the Qiangtang Plateau (QT). The results show that the TWS change exhibits different patterns in the four basins and varies from −13 to 2 mm/year from 2003 to 2017. The estimated mean annual precipitation was 260 ± 19 mm/year (QT), 697 ± 26 mm/year (UYA), 541 ± 36 mm/year (UYE), and 1160 ± 39 mm/year (YZ) which performed better than other precipitation products in the TP. It indicates a potential method for estimating basin-scale precipitation through integrating basin average precipitation from the water balance equation in the poorly gauged and ungauged regions.


Author(s):  
J. Huang ◽  
Q. Zhou

Water is essential for human survival and well-being, and important to virtually all sectors of the economy. In the aridzone of China’s west, water resource is the controlling factor on the distribution of human settlements. Water cycle variation is sensitive to temperature and precipitation, which are influenced by human activity and climate change. Satellite observations of Earth’s time-variable gravity field from the Gravity Recovery and Climate Experiment (GRACE) mission, which enable direct measurement of changes of total terrestrial water storage, could be useful to aid this modelling. In this pilot study, TWS change from 2002 to 2013 obtained from GRACE satellite mission over the Kaidu River Basin in Xinjiang, China is presented. Precipitation and temperature data from in-situ station and National Satellite Meteorological Centre of China (NSMC) are analysed to examine whether there is a statistically significant correlation between them.


2016 ◽  
Vol 17 (11) ◽  
pp. 2815-2833 ◽  
Author(s):  
Wen Wang ◽  
Wei Cui ◽  
Xiaoju Wang ◽  
Xi Chen

Abstract The Global Land Data Assimilation System (GLDAS) is an important data source for global water cycle research. Using ground-based measurements over continental China, the monthly scale forcing data (precipitation and air temperature) during 1979–2010 and model outputs (runoff, water storage, and evapotranspiration) during 2002–10 of GLDAS models [focusing on GLDAS, version 1 (GLDAS-1)/Noah and GLDAS, version 2 (GLDAS-2)/Noah] are evaluated. Results show that GLDAS-1 has serious discontinuity issues in its forcing data, with large precipitation errors in 1996 and large temperature errors during 2000–05. While the bias correction of the GLDAS-2 precipitation data greatly improves temporal continuity and reduces the biases, it makes GLDAS-2 precipitation less correlated with observed precipitation and makes it have larger mean absolute errors than GLDAS-1 precipitation for most months over the year. GLDAS-2 temperature data are superior to GLDAS-1 temperature data temporally and spatially. The results also show that the change rates of terrestrial water storage (TWS) data by GLDAS and the Gravity Recovery and Climate Experiment (GRACE) do not match well in most areas of China, and both GLDAS-1 and GLDAS-2 are not very capable of capturing the seasonal variation in monthly TWS change observed by GRACE. Runoff is underestimated in the exorheic basins over China, and runoff simulations of GLDAS-2 are much more accurate than those of GLDAS-1 for two of the three major river basins of China investigated in this study. Evapotranspiration is overestimated in the exorheic basins in China by both GLDAS-1 and GLDAS-2, whereas the overestimation of evapotranspiration by GLDAS-2 is less than that by GLDAS-1.


Sign in / Sign up

Export Citation Format

Share Document