scholarly journals Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Sheikh Hasna Habib ◽  
Hossain Kausar ◽  
Halimi Mohd Saud

Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT) and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR) were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation withEnterobactersp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolateEnterobactersp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress.

2019 ◽  
Vol 17 (1) ◽  
pp. e0801 ◽  
Author(s):  
Mitra Azadikhah ◽  
Fatemeh Jamali ◽  
Hamid-Reza Nooryazdan ◽  
Fereshteh Bayat

Plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme reduce the level of stress, ethylene and stimulate plant growth under various biotic and abiotic stress conditions. The present study aims at characterizing efficient salt-tolerant, ACC deaminase containing Pseudomonas fluorescens strains with plant growth-promoting activity isolated from the rhizosphere of barley plants and evaluating the influence of potent plant growth-promoting rhizobacteria (PGPR) isolates on growth and yield of five barley cultivars under salinity stress. Plant growth and yield in barley cultivars following inoculation with salt-tolerant, ACC deaminase producing PGPR strains under salt stress were quantified. Results indicated that under various levels of salinity (50, 100 and 150 mM NaCl) inoculation with PGPRs had positive impact on growth parameters and yield of barley cultivars including plant height, spike length, weight and number, peduncle length, number of grains per spike, 1000-grain weight and grain yield, comparing to uninoculated control plants under salinity stress. Inoculation of barley cultivars with bacteria ameliorated the negative effects of salinity and resulted in increase in growth and yield. Besides, as the salinity levels increased, growth and yield of barley cultivars decreased; however, cultivars showed different responses to salt stress. This study demonstrates the vital role of rhizobacteria containing ACC deaminase for increasing salt tolerance and consequently improving the growth and yield of barley plants under salinity stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nathan P. Nordstedt ◽  
Michelle L. Jones

Water stress decreases the health and quality of horticulture crops by inhibiting photosynthesis, transpiration, and nutrient uptake. Application of plant growth promoting rhizobacteria (PGPR) can increase the growth, stress tolerance, and overall quality of field and greenhouse grown crops subjected to water stress. Here, we evaluated Serratia plymuthica MBSA-MJ1 for its ability to increase plant growth and quality of Petunia × hybrida (petunia), Impatiens walleriana (impatiens), and Viola × wittrockiana (pansy) plants recovering from severe water stress. Plants were treated weekly with inoculum of MBSA-MJ1, and plant growth and quality were evaluated 2 weeks after recovery from water stress. Application of S. plymuthica MBSA-MJ1 increased the visual quality and shoot biomass of petunia and impatiens and increased the flower number of petunia after recovery from water stress. In addition, in vitro characterizations showed that MBSA-MJ1 is a motile bacterium with moderate levels of antibiotic resistance that can withstand osmotic stress. Further, comprehensive genomic analyses identified genes putatively involved in bacterial osmotic and oxidative stress responses and the synthesis of osmoprotectants and vitamins that could potentially be involved in increasing plant water stress tolerance. This work provides a better understanding of potential mechanisms involved in beneficial plant-microbe interactions under abiotic stress using a novel S. plymuthica strain as a model.


2013 ◽  
Vol 1 (1) ◽  
pp. 11-15 ◽  
Author(s):  
Umesh P. Shrivastava ◽  
Ashok Kumar

A total of nine strains of plant growth promoting rhizobacteria were analyzed for ACC deaminase activity, where highest ACC deaminase activity was found in Klebsiella sp strain ECI-10A (539.1 nmol α-keto butyrate/ mg protein/ h) and lowest in Microbacterium sp strain ECI-12A (122.0 nmol α-keto butyrate/ mg protein/ h). Although Microbacterium sp strain ECI-12A showed lowest level of ACC deaminase activity, but, the species of Microbacterium isolated from rhizosphere is the first report. Microbacterium sp strain ECI-12A was also analyzed under varying conditions of time, amount of 1-Aminocyclopropane-1- carboxylate (ACC), and temperature for optimization of the ACC deaminase activity. The optimum activity was recorded with the supplementation of 5mM ACC at 30°C temperature after 24h of culture growth. All the nine strains showed acdS gene in the PCR amplification of that gene. No any rhizospheric Microbacterium species showing ACC deaminase activity have been reported earlier, therefore, we report here ACC deaminase activity in Microbacterium sp ECI-12A isolated from rice rhizosphere is a novel finding. DOI: http://dx.doi.org/10.3126/ijasbt.v1i1.7921 Int J Appl Sci Biotechnol, 2013, Vol. 1(1): 11-15


Author(s):  
Akanksha Gupta ◽  
Sandeep Kumar Singh ◽  
Manoj Kumar Singh ◽  
Vipin Kumar Singh ◽  
Arpan Modi ◽  
...  

2008 ◽  
Vol 57 (4) ◽  
pp. 312-317 ◽  
Author(s):  
Venkadasamy Govindasamy ◽  
Murugesan Senthilkumar ◽  
Kishore Gaikwad ◽  
Kannepalli Annapurna

Sign in / Sign up

Export Citation Format

Share Document