culture growth
Recently Published Documents


TOTAL DOCUMENTS

449
(FIVE YEARS 114)

H-INDEX

33
(FIVE YEARS 4)

2023 ◽  
Vol 83 ◽  
Author(s):  
B. Kalim ◽  
N. M. Ali ◽  
A. Iqbal ◽  
M. T. Zahid ◽  
S. Rehman ◽  
...  

Abstract In recent days, cheapest alternative carbon source for fermentation purpose is desirable to minimize production cost. Xylanases have become attractive enzymes as their potential in bio-bleaching of pulp and paper industry. The objective of the present study was to identify the potential ability on the xylanase production by locally isolated Bacillus pumilus BS131 by using waste fiber sludge and wheat bran media under submerged fermentation. Culture growth conditions were optimized to obtain significant amount of xylanase. Maximum xylanase production was recorded after 72 hours of incubation at 30 °C and 7 pH with 4.0% substrate concentration. In the nutshell, the production of xylanase using inexpensive waste fiber sludge and wheat-bran as an alternative in place of expensive xylan substrate was more cost effective and environment friendly.


2022 ◽  
Author(s):  
Justina Versockienė ◽  
Neda Jonutytė-Trembo ◽  
Vitalij Novickij ◽  
Eglė Lastauskienė

Abstract Background Prions are proteinaceous infectious particles that act as pathogens and cause the development of lethal neurodegenerative diseases in humans and other animals. Yeast Saccharomyces cerevisiae is a widespread model system in which mechanisms of prion induction and elimination have been identified. New and safe substances and methods are being sought to cure cells of prion proteins. It is particularly important that by treating cells from prions and restoring them from the [PSI+] to the [psi−] form, the primary growth of the cells is restored. One of the main objectives of this study was to determine the growth dynamics of S. cerevisiae cells with different [PSI+] prion variants, cells that have lost [PSI+] prion variants, and cells that never had [PSI+] prion variants. Results In this research, we applied GuHCl and combined GuHCl and PEF treatment against [PSI+] prion. We evaluated cells culture growth dynamics – optical density and doubling time and determined that method of [PSI+] prion elimination does not affect cell doubling time. Also, we found that both elimination methods affect the optical density reached by [psi−] cells. However, the cells in which the [PSI+] prion has been eliminated by GuHCl alone are able to reach the same optical density as unaffected [psi−] cells and higher optical density than the affected [psi−] cells by GuHCl alone. Conclusions These findings indicate the potential long-term positive effect of [PSI+] prion on cell growth, which persists after [PSI+] removal.


Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 41
Author(s):  
Brigkita Venardou ◽  
John V. O’Doherty ◽  
Marco Garcia-Vaquero ◽  
Claire Kiely ◽  
Gaurav Rajauria ◽  
...  

Ascophyllum nodosum and its extracts are promising antibacterial and prebiotic dietary supplements for pigs. The objectives of this study were to evaluate the effects of the increasing concentrations of: (1) two whole biomass samples of A. nodosum with different harvest seasons, February (ANWB-F) and November (ANWB-N), in a weaned pig faecal batch fermentation assay, and (2) A. nodosum extracts produced using four different extraction conditions of a hydrothermal-assisted extraction methodology (ANE1–4) and conventional extraction methods with water (ANWE) and ethanol (ANEE) as solvent in individual pure culture growth assays using a panel of beneficial and pathogenic bacterial strains. In the batch fermentation assay, ANWB-F reduced Bifidobacterium spp. counts (p < 0.05) while ANWB-N increased total bacterial counts and reduced Bifidobacterium spp. and Enterobacteriaceae counts (p < 0.05). Of the ANE1–4, produced from ANWB-F, ANWE and ANEE that were evaluated in the pure culture growth assays, the most interesting extracts were the ANE1 that reduced Salmonella Typhimurium, enterotoxigenic Escherichia coli and B. thermophilum counts and the ANE4 that stimulated B. thermophilum growth (p < 0.05). In conclusion, the extraction method and conditions influenced the bioactivities of the A. nodosum extracts with ANE1 and ANE4 exhibiting distinct antibacterial and prebiotic properties in vitro, respectively, that merit further exploration.


Author(s):  
Bhumi Rajyaguru ◽  
Ajit Varma ◽  
Amit Kharkwal ◽  
Jasvir Singh

The objective of the present study was to study the optimization conditions for the production of xanthan by Xanthomonas campestris from pre-treated sugarcane molasses. In the study, the optimization was carried out for different parameters including pH, temperature, and incubation time for the pre-treated sugarcane molasses. The age of inoculums and time of culture growth (6, 12, 18 and 24 hrs), size of inoculums (2%, 5%, 7.5% and 10%), pH (6.6, 6.8, 7.0 and 7.2) and temperature (25°C, 28°C, 30°C, 32°C and 37°C) were studied. It was observed that the xanthan production was maximal with 7.5% (v/v) inoculums, pH. 7 at 30°C for 48 hrs. The study suggested that cane molasses is an appropriate agro-industrial substrate for xanthan gum fermentations, and further scale-up study is needed for gum production in the stirred fermenter.


Author(s):  
M. O. Finogenova ◽  
M. B. Galkin ◽  
A. S. Semenets ◽  
I. V. Prishchenko ◽  
G. S. Kaleva ◽  
...  

Aim. Establishing of the ability to synthesize surface-active compounds by Pseudomonas aeruginosa bacteria isolated from the surface of Black Sea mussels. Methods. During the research several marine Pseudomonas spp strains isolated from petroleum hydrocarbon contaminated areas of Black Sea wereused: P. aeruginosa M1, P. aeruginosa M4 and P. aeruginosa PA01 as reference strain in suspension and biofilm cultures (LB and Giss media). Cultivation of Pseudomonas aeruginosa strains was performed at 37 °C for 120 and 168 hours. Planktonic culture growth was determined spectrophotometrically on the wave length 600 nm. Biofilm mass was determined spectrophotometrically on the wave length 592 nm by CV-test. The presence of surface-active compounds was determined in a drop test. The quantitative content of rhamnolipids was evaluated by the color reaction of rhamnose with orcin. Results. P. aeruginosa strains M1 and M4 isolated from Black Sea mussel’s surfaces synthesize 25% and 66% more surfactants than the reference strain PA01. All strains in Giss medium synthesized 10–20 times less rhamnolipids than in LB medium. In biofilm cultures the same biosurfactant synthesis dependence on the composition of the nutrient medium is observed as in suspension cultures. According to the intensity of rhamnolipid production in biofilm cultures, the studied strains can be arranged in the following row: P. aeruginosa M4 > P. aeruginosa M1 >> P. aeruginosa PA01.Conclusions. The strains of P. aeruginosa isolated from the Black Sea are more efficient producers of rhamnolipids than the reference strain of P. aeruginosa PA01; the intensity of biosynthesis of surfactants significantly depends on the composition of the nutrient medium and the method of cultivation.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3571
Author(s):  
Tatiana Yu. Plyusnina ◽  
Sergei S. Khruschev ◽  
Polina V. Fursova ◽  
Alexei E. Solovchenko ◽  
Taras K. Antal ◽  
...  

Using a mathematical simulation approach, we studied the dynamics of the green microalga Chlorella vulgaris phosphate metabolism response to shortage and subsequent replenishing of inorganic phosphate in the medium. A three-pool interaction model was used to describe the phosphate uptake from the medium, its incorporation into the cell organic compounds, its storage in the form of polyphosphates, and culture growth. The model comprises a system of ordinary differential equations. The distribution of phosphorous between cell pools was examined for three different stages of the experiment: growth in phosphate-rich medium, incubation in phosphate-free medium, and phosphate addition to the phosphorus-starving culture. Mathematical modeling offers two possible scenarios for the appearance of the peak of polyphosphates (PolyP). The first scenario explains the accumulation of PolyP by activation of the processes of its synthesis, and the decline in PolyP is due to its redistribution between dividing cells during growth. The second scenario includes a hysteretic mechanism for the regulation of PolyP hydrolysis, depending on the intracellular content of inorganic phosphate. The new model of the dynamics of P pools in the cell allows one to better understand the phenomena taking place during P starvation and re-feeding of the P-starved microalgal cultures with inorganic phosphate such as transient PolyP accumulation. Biotechnological implications of the observed dynamics of the polyphosphate pool of the microalgal cell are considered. An approach enhancing the microalgae-based wastewater treatment method based on these scenarios is proposed.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1560
Author(s):  
Gustave Buname ◽  
Gapto Aristides Kiwale ◽  
Martha F. Mushi ◽  
Vitus Silago ◽  
Peter Rambau ◽  
...  

Background: Tonsillitis is an inflammation of the tonsils due to either viruses or bacteria. Here, we report the bacteria patterns on the tonsillar surface and tonsillar core tissue among patients scheduled for tonsillectomy at Bugando Medical Centre (BMC), Mwanza Tanzania. Methods: The study included 120 patients planned for tonsillectomy between April and July 2019. Swab samples from tonsillar surface pre-tonsillectomy and core post-tonsillectomy were collected. Culture was performed following the microbiology laboratory standard operating procedures. Data analysis was completed using STATA version 13, as per the study objectives. Results: The slight majority of participants were males (73; 60.83%) with median age of 6 years (interquartile range 4–11). The proportion of positive culture growth was higher on the surface than in core swab samples: 65 (54.2%) vs. 42 (35.0%), p = 0.003. The commonest bacterial pathogen detected from the surface and core were S. aureus in 29 (40.3%) and 22 (51.2%) participants, followed by S. pyogenes in 17 (23.6%) and 11 (25.6%), respectively. Methicillin-resistant Staphylococcus aureus (MRSA) was observed in 20/51 (39%) of isolates. Streptococcus pyogenes resistance to macrolides ranged from 8.3% for core isolates to 35.3% for surface isolates. Features suggestive of tonsillitis on histology were reported in 83 (73.5%) samples. Conclusion: More than two-thirds of patients undergoing tonsillectomy had a positive culture for possible bacterial pathogens. Staphylococcus aureus and Streptococcus pyogenes were the predominant bacteria detected with more than one third of Staphylococcus aureus being MRSA. More studies to investigate the treatment outcome of these patients are highly recommended.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sergey G. Skripkin ◽  
Bulat R. Sharifullin ◽  
Igor V. Naumov ◽  
Vladimir N. Shtern

AbstractLooking for an optimal flow shape for culture growth in vortex bioreactors, an intriguing and impressive structure has been observed that mimics the strong swirling flows in the atmosphere (tornado) and ocean (waterspout). To better understand the flow nature and topology, this experimental study explores the development of vortex breakdown (VB) in a lab-scale swirling flow of two immiscible fluids filling a vertical cylindrical container. The rotating bottom disk drives the circulation of both fluids while the sidewall is stationary. The container can be either sealed with the still top disk (SC) or open (OC). As the rotation strength (Re) increases, a new circulation cell occurs in each fluid—the dual VB. In case SC, VB first emerges in the lower fluid at Re = 475 and then in the upper fluid at Re = 746. In case OC, VB first emerges in the upper fluid at Re = 524 and then in the lower fluid at Re = 538. The flow remains steady and axisymmetric with the interface and the free surface being just slightly deformed in the studied range of Re. Such two-VB swirling flows can provide efficient mixing in aerial or two-fluid bioreactors.


2021 ◽  
Vol 10 (4) ◽  
pp. 72-80
Author(s):  
D. B. Kuznetsov ◽  
A. Yu. Mironov ◽  
V. A. Neschislyaev ◽  
I. L. Volkhin ◽  
A. M. Korolyuk ◽  
...  

Introduction. E. coli strains are the main microorganisms used for the production of a number of important biopharmaceutical products. There are no natural sources of microwave radiation on Earth, as it is absorbed by the upper atmosphere. No one doubts the importance of studying the biological effect of microwave radiation. The number of publications devoted to this problem is growing every year, and new ideas for the use of microwaves in drug production technology are emerging.Aim. Reveal the main effects of microwave irradiation and develop a technology for microwave intensification of E. coli culture growth.Materials and methods. This study presents the results of atomic force microscopy, refractometry, NMR relaxometry, turbidimetry, and lumimetry, demonstrating the possibility of microwave intensification of the cultivation process.Results and discussion. It was found that microwave irradiation leads to changes in the mobility of protons and the adsorption of water molecules on biopolymers and cells. These are the main links in the mechanism of "non-thermal" microwave action. A single microwave irradiation, depending on a number of parameters, can decrease or increase the growth of biomass. Studies of the bioluminescence of the E. coli strain with the lux-operon have shown that the optimal processing conditions do not negatively affect the luciferase production and metabolic activity of cells. Conclusion. The intensification procedure using microwave radiation can be considered a promising method and can provide new ideas for various applications in biotechnology.


Sign in / Sign up

Export Citation Format

Share Document