scholarly journals Static Balance in Patients with Vestibular Impairments: A Preliminary Study

Scientifica ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-4 ◽  
Author(s):  
Hossein Talebi ◽  
Mohammad Taghi Karimi ◽  
Seyed Hamid Reza Abtahi ◽  
Niloofar Fereshtenejad

Aims. Vestibular system is indicated as one of the most important sensors responsible for static and dynamic postural control. In this study, we evaluated static balance in patients with unilateral vestibular impairments.Materials and Methods. We compared static balance control using Kistler force plate platform between 10 patients with unilateral vestibular impairments and 20 normal counterparts in the same sex ratio and age limits (50±7). We evaluated excursion and velocity of center of pressure (COP) and path length in anteroposterior (AP) and mediolateral (ML) planes with eyes open and with eyes closed.Results. There was no significant difference between COP excursions in ML and AP planes between both groups with eyes open and eyes closed (pvalue > 0.05). In contrast, the difference between velocity and path length of COP in the mentioned planes was significant between both groups with eyes open and eyes closed (pvalue < 0.05).Conclusions. The present study showed the static instability and balance of patients with vestibular impairments indicated by the abnormal characteristics of body balance.

2018 ◽  
Vol 30 (01) ◽  
pp. 1850014
Author(s):  
Chu-Fen Chang ◽  
Hui-Ji Fan ◽  
Hung-Bin Chen ◽  
Houu-Wooi Lim ◽  
Hsiao-Yuan Lee ◽  
...  

The aim of this study was to investigate the immediate effect of wearing the functional insoles with different slopes of forefoot wedges on postural stability in young adults during quiet stance. In this study, the functional insole was composed of a forefoot wedge and a medial arch support. Twelve healthy young adults (six males and six females) participated. Each subject wore sneakers with and without functional insole and stood as still as possible on a force plate with feet together, arms by side and head facing ahead for 60[Formula: see text]s, while eyes open and eyes closed, respectively. The functional insole was applied in the random sequence of no insole, wearing insole with a medial arch and a four-degree forefoot wedge, as well as wearing insole with a medial arch and an eight-degree forefoot wedge. The sway areas as well as the maximal excursions of the center of pressure (COP) in anterior–posterior (AP) and medial–lateral (ML) directions were used to evaluate the static postural stability. During stance with feet together and eyes closed, the sway area and maximal excursion of the COP in the AP direction were significantly decreased when wearing an eight-degree forefoot wedge functional insole. Since the reduced displacements of the COP indicated better postural control, it was suggested that the functional insole with an eight-degree forefoot wedge and a medial arch support might be beneficial to improve the postural stability in patients with impaired balance control, especially for whom having high risk of forward falls.


Motor Control ◽  
2021 ◽  
pp. 1-14
Author(s):  
Erika Zemková ◽  
Alena Cepková ◽  
José M. Muyor

This study investigates postural responses to unexpected perturbations induced by a load release of different weights. Groups of 26 men (age 22.6 ± 2.4 years, height 178.0 ± 9.1 cm, and body mass 86.9 ± 11.5 kg) and 21 women (age 21.9 ± 2.7 years, height 168.8 ± 6.8 cm, and body mass 65.3 ± 8.7 kg) underwent load-triggered postural perturbations by 1 and 2 kg while standing on a force plate with either eyes open or eyes closed. Postural perturbations induced by a heavier load, representing about 2% and 3% of body weight in men and women, respectively, led to significantly higher peak anterior and peak posterior center of pressure displacements when compared with a lighter load (29.6% and 45.4%, respectively) both with eyes open (36.9%) and closed (42.1%). Their values were significantly lower in men than women only when a higher load was used (∼25%). However, there were no significant differences in time to peak anterior and posterior center of pressure displacements. These findings indicate that heavier load-induced postural perturbations are greater in women than men regardless of visual conditions. This underlines the importance of loading dose in the magnitude of postural responses to externally induced perturbations.


2000 ◽  
Vol 16 (3) ◽  
pp. 234-247 ◽  
Author(s):  
Olivier Caron ◽  
Thierry Gélat ◽  
Patrice Rougier ◽  
Jean-Pierre Blanchi

The center of foot pressure (CP) motions, representing the net neuromuscular control, was compared to the center of gravity (CG) motions, representing the net performance. The comparison focused on the trajectory path length parameter along the mediolateral and antero-posterior axes because these two variables depend on amplitude versus frequency relationship. This relationship was used to evaluate the CG motions based on the CP motions. Seven subjects stood still on a force plate with eyes open and eyes closed. The results showed that the ratio of (CP – CG)/CP trajectory path length was personal for each subject. These results suggest different levels of passive (ligaments, elastic properties) and active (reflex activity) stiffness. For some subjects, this ratio was significantly lower for the eyes open condition than for the eyes closed condition, indicating a decrease of the active stiffness for the eyes open condition. Therefore, a CG – CP comparative analysis appeared helpful in understanding the control of balance and necessary to quantify the subjects’ net performance.


Healthcare ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 402 ◽  
Author(s):  
Juan De la Torre ◽  
Javier Marin ◽  
Marco Polo ◽  
José J. Marín

Balance disorders have a high prevalence among elderly people in developed countries, and falls resulting from balance disorders involve high healthcare costs. Therefore, tools and indicators are necessary to assess the response to treatments. Therefore, the aim of this study is to detect relevant changes through minimal detectable change (MDC) values in patients with balance disorders, specifically with vertigo. A test-retest of a static and dynamic balance test was conducted on 34 healthy young volunteer subjects using a portable stabilometric platform. Afterwards, in order to show the MDC applicability, eight patients diagnosed with balance disorders characterized by vertigo of vestibular origin performed the balance test before and after a treatment, contrasting the results with the assessment by a specialist physician. The balance test consisted of four tasks from the Romberg test for static balance control, assessing dynamic postural balance through the limits of stability (LOS). The results obtained in the test-retest show the reproducibility of the system as being similar to or better than those found in the literature. Regarding the static balance variables with the lowest MDC value, we highlight the average velocity of the center of pressure (COP) in all tasks and the root mean square (RMS), the area, and the mediolateral displacement in soft surface, with eyes closed. In LOS, all COP limits and the average speed of the COP and RMS were highlighted. Of the eight patients assessed, an agreement between the specialist physician and the balance test results exists in six of them, and for two of the patients, the specialist physician reported no progression, whereas the balance test showed worsening. Patients showed changes that exceeded the MDC values, and these changes were correlated with the results reported by the specialist physician. We conclude that (at least for these eight patients) certain variables were sufficiently sensitive to detect changes linked to balance progression. This is intended to improve decision making and individualized patient monitoring.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zoe A. Bamber ◽  
Wei Sun ◽  
Rhea S. Menon ◽  
Patrick C. Wheeler ◽  
Ian D. Swain ◽  
...  

Balance improvement could contribute to ankle stability for the prevention of ankle sprains. Functional electrical stimulation (FES) is an effective way of augmenting muscle activity and improving balance. This study investigated the effect of FES of peroneal muscles on single-and double-leg balance. Fifteen healthy females (age=23.1±1.6 years, height=1.63±0.07 m, and weight=63.7±9.9 kg) performed single- and double-leg standing balance tests with eyes open and closed before and after 15-minute FES intervention during treadmill running at a comfortable, self-selected pace. FES of peroneal muscles was provided bilaterally, using an Odstock Dropped Foot Stimulator. The total excursion of the centre of pressure (COP) was calculated to assess the standing balance control ability. The total excursion of COP in single- and double-leg stance with eyes open reduced significantly after FES intervention by 14.7% (p<0.001) and 5.9% (p=0.031), respectively. The eyes-closed condition exhibited a 12.7% (p=0.002) reduction in single-leg stance but did not significantly change in double-leg stance (p>0.05). Limb preference did not account for balance postintervention. No significant difference in total excursion of COP was found between preferred and less preferred limbs with both visual conditions (p>0.05). FES of peroneal muscles improved standing balance control with eyes open in double-leg and single-leg stance and with eyes closed in double-leg stance. The improvements in balance control with FES treatment did not vary concerning limb preference.


2020 ◽  
Vol 29 (1) ◽  
pp. 134-136
Author(s):  
Ryan Morrison ◽  
Kyle M. Petit ◽  
Chris Kuenze ◽  
Ryan N. Moran ◽  
Tracey Covassin

Context: Balance testing is a vital component in the evaluation and management of sport-related concussion. Few studies have examined the use of objective, low-cost, force-plate balance systems and changes in balance after a competitive season. Objective: To examine the extent of preseason versus postseason static balance changes using the Balance Tracking System (BTrackS) force plate in college athletes. Design: Pretest, posttest design. Setting: Athletic training facility. Participants: A total of 47 healthy, Division-I student-athletes (33 males and 14 females; age 18.4 [0.5] y, height 71.8 [10.8] cm, weight 85.6 [21.7] kg) participated in this study. Main Outcome Measures: Total center of pressure path length was measured preseason and postseason using the BTrackS force plate. A Wilcoxon signed-rank test was conducted to examine preseason and postseason changes. SEM and minimal detectable change were also calculated. Results: There was a significant difference in center of pressure path length differed between preseason (24.6 [6.8] cm) and postseason (22.7 [5.4] cm) intervals (P = .03), with an SEM of 3.8 cm and minimal detectable change of 10.5 cm. Conclusions: Significant improvements occurred for center of pressure path length after a competitive season, when assessed using the BTrackS in a sample of college athletes. Further research is warranted to determine the effectiveness of the BTrackS as a reliable, low-cost alternative to force-plate balance systems. In addition, clinicians may need to update baseline balance assessments more frequently to account for improvements.


2019 ◽  
Vol 10 (1) ◽  
pp. 1 ◽  
Author(s):  
Felix Wachholz ◽  
Federico Tiribello ◽  
Arunee Promsri ◽  
Peter Federolf

Dual-tasking charges the sensorimotor system with performing two tasks simultaneously. Center of pressure (COP) analysis reveals the postural control that is altered during dual-tasking, but may not reveal the underlying neural mechanisms. In the current study, we hypothesized that the minimal intervention principle (MIP) provides a concept by which dual-tasking effects on the organization and prioritization of postural control can be predicted. Postural movements of 23 adolescents (age 12.7 ± 1.3; 8 females) and 15 adults (26.9 ± 2.3) were measured in a bipedal stance with eyes open, eyes closed and eyes open while performing a dual-task using a force plate and 39 reflective markers. COP data was analyzed by calculating the mean velocity, standard deviation and amplitude of displacement. Kinematic data was examined by performing a principal component analysis (PCA) and extracting postural movement components. Two variables were determined to investigate changes in amplitude (aVark) and in control (Nk) of the principal movement components. Results in aVark and in Nk agreed well with the predicted dual-tasking effects. Thus, the current study corroborates the notion that the MIP should be considered when investigating postural control under dual-tasking conditions.


2019 ◽  
Vol 02 (02) ◽  
pp. 100-101
Author(s):  
Rodríguez Rosal M. ◽  
Sánchez Sixto A. ◽  
Álvarez Barbosa F. ◽  
Yáñez Álvarez A.

Abstract Background and Aims Ankle proprioception can be tested in many ways. Some studies have found improvements in individuals with chronic ankle instability after receiving treatment and training proprioceptive acuity and speed. Currently, there is a scarcity of evidence concerning percutaneous neuromodulation. The first findings were reported in the post-surgical stage after total knee arthroplasty and in neural improvements and symptoms in patients with hyperactive bladder. Aim To evaluate the effectiveness of percutaneous neuromodulation on the tibial nerve for the improvement of various proprioception parameters in patients with chronic ankle instability. Material and Methods Five men (age: 24.8 ± 4.9 years; height: 1.78 ± 0.08 m; weight: 86 ± 9.8 kg) with chronic ankle instability, who regularly practiced sports activities participated in the present study. People who had undergone an injury in the previous three months were excluded from the speed. Currently, there is a scarcity of evidence concerning test before and immediately after percutaneous neuromodulation. A single leg balance test was performed with eyes open and closed, maintaining the single-legged position on a force plate during 30 seconds (Accupower; AMTI, Watertown, MA) registering 1000 Hz. The displacement of the center of pressure (DOT) was determined based on the distances of its antero-posterior axes (DOT_AP) and medio-lateral (DOT_ML). Furthermore, the amplitudes of anteroposterior and mediolateral displacement were evaluated (ACPap and ACPml). The posterior tibial nerve was stimulated under ultrasound guidance using a 100 Vpp current, with a pulse width of 250 μs and a repetition frequency of 2 to 10 Hz. The process was performed on three occasions during 30 seconds, with an intensity that was acknowledged by the patient but which did not go beyond a score of 3 in the visual analog scale (VAS). The means and standard deviations were calculated for all variables. The effect size was calculated establishing the confidence interval at 90% and the probability of the change being significant was qualitatively calculated. Results A decrease was found in the ACPap (Pre-test eyes open: 5.42 ± 0.62 and eyes closed: 15.99 ± 0.60; Post-test eyes open 4.05 ± 0.36 and eyes closed 10.33 ± 0.49) after the neuromodulation intervention on the tibial nerve. This was a significant change and a “possible” effect size was found in the closed eyes condition (-0.54; ± 0.72), according to Hopkins. For the remaining variables, no significant differences were observed. Conclusions A decreased displacement of the center of mass was found in the antero-posterior axis after performing the neuromodulation technique on the tibial nerve in patients with chronic ankle instability.


Author(s):  
Atiya A. Shaikh ◽  
Rutuja D. Joshi

Background: Background and need of study- Influence of gender on balance is still controversial. Previous researchers have done studies using traditional methods. These methods may fail to detect subtle changes in balance difference. A tool like posturography which is highly specific may help to for accurate assessment and hence precise conclusion. Aim was to compare balance scores of male and female elderly using modified Clinical Test of Sensory Interaction on Balance (CTSIB).Methods: There were 56 healthy elderly ambulating without an assistive device and free from any neurological and orthopedic problems were assessed for their balance abilities using mCTSIB of balance master(standing on firm surface with eyes open, with eyes closed, standing on foam surface with eyes open and with eyes closed). Sway velocity was assessed using Unpaired t test.Results: There was a no significant difference in scores of modified CTSIB between male and female elderly ( p value>0.005).Conclusions: Gender has no effect on static balance abilities between male and female elderly while performing modified clinical test of sensory interaction on balance.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246790
Author(s):  
Ioannis Bargiotas ◽  
Argyris Kalogeratos ◽  
Myrto Limnios ◽  
Pierre-Paul Vidal ◽  
Damien Ricard ◽  
...  

Falling in Parkinsonian syndromes (PS) is associated with postural instability and consists a common cause of disability among PS patients. Current posturographic practices record the body’s center-of-pressure displacement (statokinesigram) while the patient stands on a force platform. Statokinesigrams, after appropriate processing, can offer numerous posturographic features. This fact, although beneficial, challenges the efforts for valid statistics via standard univariate approaches. In this work, 123 PS patients were classified into fallers (PSF) or non-faller (PSNF) based on the clinical assessment, and underwent simple Romberg Test (eyes open/eyes closed). We developed a non-parametric multivariate two-sample test (ts-AUC) based on machine learning, in order to examine statokinesigrams’ differences between PSF and PSNF. We analyzed posturographic features using both multiple testing with p-value adjustment and ts-AUC. While ts-AUC showed significant difference between groups (p-value = 0.01), multiple testing did not agree with this result (eyes open). PSF showed significantly increased antero-posterior movements as well as increased posturographic area compared to PSNF. Our study highlights the superiority of ts-AUC compared to standard statistical tools in distinguishing PSF and PSNF in multidimensional space. Machine learning-based statistical tests can be seen as a natural extension of classical statistics and should be considered, especially when dealing with multifactorial assessments.


Sign in / Sign up

Export Citation Format

Share Document