balance control
Recently Published Documents


TOTAL DOCUMENTS

2037
(FIVE YEARS 644)

H-INDEX

71
(FIVE YEARS 6)

2022 ◽  
Vol 169 ◽  
pp. 104643
Author(s):  
Xudong Zheng ◽  
Xianjin Zhu ◽  
Zhang Chen ◽  
Yiyong Sun ◽  
Bin Liang ◽  
...  

Author(s):  
Yi-Ching Chen ◽  
Yi-Ying Tsai ◽  
Gwo-Ching Chang ◽  
Ing-Shiou Hwang

Abstract Background Error amplification (EA), virtually magnify task errors in visual feedback, is a potential neurocognitive approach to facilitate motor performance. With regional activities and inter-regional connectivity of electroencephalography (EEG), this study investigated underlying cortical mechanisms associated with improvement of postural balance using EA. Methods Eighteen healthy young participants maintained postural stability on a stabilometer, guided by two visual feedbacks (error amplification (EA) vs. real error (RE)), while stabilometer plate movement and scalp EEG were recorded. Plate dynamics, including root mean square (RMS), sample entropy (SampEn), and mean frequency (MF) were used to characterize behavioral strategies. Regional cortical activity and inter-regional connectivity of EEG sub-bands were characterized to infer neural control with relative power and phase-lag index (PLI), respectively. Results In contrast to RE, EA magnified the errors in the visual feedback to twice its size during stabilometer stance. The results showed that EA led to smaller RMS of postural fluctuations with greater SampEn and MF than RE did. Compared with RE, EA altered cortical organizations with greater regional powers in the mid-frontal cluster (theta, 4–7 Hz), occipital cluster (alpha, 8–12 Hz), and left temporal cluster (beta, 13–35 Hz). In terms of the phase-lag index of EEG between electrode pairs, EA significantly reduced long-range prefrontal-parietal and prefrontal-occipital connectivity of the alpha/beta bands, and the right tempo-parietal connectivity of the theta/alpha bands. Alternatively, EA augmented the fronto-centro-parietal connectivity of the theta/alpha bands, along with the right temporo-frontal and temporo-parietal connectivity of the beta band. Conclusion EA alters postural strategies to improve stance stability on a stabilometer with visual feedback, attributable to enhanced error processing and attentional release for target localization. This study provides supporting neural correlates for the use of virtual reality with EA during balance training.


2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Guanglin Sha ◽  
Qing Duan ◽  
Wanxing Sheng ◽  
Yao Zhang ◽  
Chunyan Ma ◽  
...  

Aiming at the demand for medium- and high-voltage port access capability in energy router, this study proposes a quad-port DC/DC converter topology scheme based on modular multilevel converter (QP-M2DC). Compared with the traditional multiterminal energy routing converter, it has the advantages of high modularity, strong flexibility, and high power density. In addition, for the modular structure on the medium- and high-voltage sides, this study proposes a narrow phase-shift cyclic modulation strategy, which reduces the system need for voltage balance control and simplifies the overall system control. This study comprehensively introduces and analyses the QP-M2DC topology, working principle, high-frequency link equivalent, and power characteristics, then establishes an equivalent model of system control, and proposes a control scheme for a multiterminal energy routing converter. Finally, a simulation model of the system is established through PLECS, and the simulation results show that in such a narrow phase-shift modulation strategy, the proposed topology can have stable operation in a variety of patterns, reduce the capacitance, and achieve better voltage balance at the same time. The experimental results show the converter efficiency of up to 97.8%. It further shows the superiority of the proposed topology structure and the correctness and effectiveness of the proposed control schemes.


2022 ◽  
Vol 15 ◽  
Author(s):  
Franck Di Rienzo ◽  
Pierric Joassy ◽  
Thiago Ferreira Dias Kanthack ◽  
François Moncel ◽  
Quentin Mercier ◽  
...  

Motor Imagery (MI) reproduces cognitive operations associated with the actual motor preparation and execution. Postural recordings during MI reflect somatic motor commands targeting peripheral effectors involved in balance control. However, how these relate to the actual motor expertise and may vary along with the MI modality remains debated. In the present experiment, two groups of expert and non-expert gymnasts underwent stabilometric assessments while performing physically and mentally a balance skill. We implemented psychometric measures of MI ability, while stabilometric variables were calculated from the center of pressure (COP) oscillations. Psychometric evaluations revealed greater MI ability in experts, specifically for the visual modality. Experts exhibited reduced surface COP oscillations in the antero-posterior axis compared to non-experts during the balance skill (14.90%, 95% CI 34.48–4.68, p < 0.05). Experts further exhibited reduced length of COP displacement in the antero-posterior axis and as a function of the displacement area during visual and kinesthetic MI compared to the control condition (20.51%, 95% CI 0.99–40.03 and 21.85%, 95% CI 2.33–41.37, respectively, both p < 0.05). Predictive relationships were found between the stabilometric correlates of visual MI and physical practice of the balance skill, as well as between the stabilometric correlates of kinesthetic MI and the training experience in experts. Present results provide original stabilometric insights into the relationships between MI and expertise level. While data support the incomplete inhibition of postural commands during MI, whether postural responses during MI of various modalities mirror the level of motor expertise remains unclear.


2022 ◽  
Vol 15 ◽  
Author(s):  
Diana Bzdúšková ◽  
Martin Marko ◽  
Zuzana Hirjaková ◽  
Jana Kimijanová ◽  
František Hlavačka ◽  
...  

Virtual reality (VR) enables individuals to be exposed to naturalistic environments in laboratory settings, offering new possibilities for research in human neuroscience and treatment of mental disorders. We used VR to study psychological, autonomic and postural reactions to heights in individuals with varying intensity of fear of heights. Study participants (N = 42) were immersed in a VR of an unprotected open-air elevator platform in an urban area, while standing on an unstable ground. Virtual elevation of the platform (up to 40 m above the ground level) elicited robust and reliable psychophysiological activation including increased distress, heart rate, and electrodermal activity, which was higher in individuals suffering from fear of heights. In these individuals, compared with individuals with low fear of heights, the VR height exposure resulted in higher velocity of postural movements as well as decreased low-frequency (<0.5 Hz) and increased high-frequency (>1 Hz) body sway oscillations. This indicates that individuals with strong fear of heights react to heights with maladaptive rigidity of posture due to increased weight of visual input for balance control, while the visual information is less reliable at heights. Our findings show that exposure to height in a naturalistic VR environment elicits a complex reaction involving correlated changes of the emotional state, autonomic activity, and postural balance, which are exaggerated in individuals with fear of heights.


2022 ◽  
Vol 12 (1) ◽  
pp. 22-32
Author(s):  
Ilmari Pyykkö ◽  
Nora Pyykkö ◽  
Jing Zou ◽  
Vinaya Manchaiah

Background: To explore and characterize balance problems in subjects with Ménière’s disease (MD). Methods: A total of 539 people with MD with a mean age of 61.9 years, mean disease history of 15.6 years, and 79.5% females were recruited. The online questionnaire, consisting of 39 questions, including both structured and open-ended questions, focused on symptoms of MD, balance problems, impacts of the complaints, and quality of life (QoL). Results: After hearing loss (58%) and tinnitus (50%), balance problems (44%) were among the most commonly reported MD complaints, even higher than the impact of vertigo (40%). However, only 22% reported that those balance problems made obvious impacts in their daily lives. The most common balance problem that significantly reduced QoL was tripping (34%). Swaying (25%) had a limited impact on QoL, whereas rocking (10%) was less common but caused a significant impact on QoL. Non-defined balance problems were reported at 18%; these were occasional and correlated with vertigo attacks. Older participants had more frequent tripping problems. Younger participants more frequently reported swaying and rocking. Conclusions: Risk factors predicting poor postural control were mostly related to complaints reflecting otolith pathology. Different types of postural problems require different strategies to manage balance control and cope with the disease.


2022 ◽  
Vol 23 (2) ◽  
pp. 56-64
Author(s):  
Guillermo Mendez-Rebolledo ◽  
Yacay Olcese-Farias ◽  
Domynyk Brown-Villegas

2021 ◽  
Vol 33 (6) ◽  
pp. 272-277
Author(s):  
Sang-Hyuk Yoon ◽  
Jae-Won Lee ◽  
Dongyeop Lee ◽  
Ji-Heon Hong ◽  
Jae-Ho Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document