scholarly journals Z Number Based Fuzzy Inference System for Dynamic Plant Control

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Rahib H. Abiyev

Frequently the reliabilities of the linguistic values of the variables in the rule base are becoming important in the modeling of fuzzy systems. Taking into consideration the reliability degree of the fuzzy values of variables of the rules the design of inference mechanism acquires importance. For this purpose, Z number based fuzzy rules that include constraint and reliability degrees of information are constructed. Fuzzy rule interpolation is presented for designing of an inference engine of fuzzy rule-based system. The mathematical background of the fuzzy inference system based on interpolative mechanism is developed. Based on interpolative inference process Z number based fuzzy controller for control of dynamic plant has been designed. The transient response characteristic of designed controller is compared with the transient response characteristic of the conventional fuzzy controller. The obtained comparative results demonstrate the suitability of designed system in control of dynamic plants.

Author(s):  
Tze Ling Jee ◽  
Kai Meng Tay ◽  
Chee Khoon Ng

A search in the literature reveals that the use of fuzzy inference system (FIS) in criterion-referenced assessment (CRA) is not new. However, literature describing how an FIS-based CRA can be implemented in practice is scarce. Besides, for an FIS-based CRA, a large set of fuzzy rules is required and it is a rigorous work in obtaining a full set of rules. The aim of this chapter is to propose an FIS-based CRA procedure that incorporated with a rule selection and a similarity reasoning technique, i.e., analogical reasoning (AR) technique, as a solution for this problem. AR considers an antecedent with an unknown consequent as an observation, and it deduces a conclusion (as a prediction of the consequent) for the observation based on the incomplete fuzzy rule base. A case study conducted in Universiti Malaysia Sarawak is further reported.


Author(s):  
Patrícia F. P. Ferraz ◽  
Tadayuki Yanagi Junior ◽  
Yamid F. Hernandez-Julio ◽  
Gabriel A. e S. Ferraz ◽  
Maria A. J. G. Silva ◽  
...  

ABSTRACT The aim of this study was to estimate and compare the respiratory rate (breath min-1) of broiler chicks subjected to different heat intensities and exposure durations for the first week of life using a Fuzzy Inference System and a Genetic Fuzzy Rule Based System. The experiment was conducted in four environmentally controlled wind tunnels and using 210 chicks. The Fuzzy Inference System was structured based on two input variables: duration of thermal exposure (in days) and dry bulb temperature (°C), and the output variable was respiratory rate. The Genetic Fuzzy Rule Based System set the parameters of input and output variables of the Fuzzy Inference System model in order to increase the prediction accuracy of the respiratory rate values. The two systems (Fuzzy Inference System and Genetic Fuzzy Rule Based System) proved to be able to predict the respiratory rate of chicks. The Genetic Fuzzy Rule Based System interacted well with the Fuzzy Inference System model previously developed showing an improvement in the respiratory rate prediction accuracy. The Fuzzy Inference System had mean percentage error of 2.77, and for Fuzzy Inference System and Genetic Fuzzy Rule Based System it was 0.87, thus indicating an improvement in the accuracy of prediction of respiratory rate when using the tool of genetic algorithms.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 707 ◽  
Author(s):  
Tran Manh Tuan ◽  
Luong Thi Hong Lan ◽  
Shuo-Yan Chou ◽  
Tran Thi Ngan ◽  
Le Hoang Son ◽  
...  

Complex fuzzy theory has strong practical background in many important applications, especially in decision-making support systems. Recently, the Mamdani Complex Fuzzy Inference System (M-CFIS) has been introduced as an effective tool for handling events that are not restricted to only values of a given time point but also include all values within certain time intervals (i.e., the phase term). In such decision-making problems, the complex fuzzy theory allows us to observe both the amplitude and phase values of an event, thus resulting in better performance. However, one of the limitations of the existing M-CFIS is the rule base that may be redundant to a specific dataset. In order to handle the problem, we propose a new Mamdani Complex Fuzzy Inference System with Rule Reduction Using Complex Fuzzy Measures in Granular Computing called M-CFIS-R. Several fuzzy similarity measures such as Complex Fuzzy Cosine Similarity Measure (CFCSM), Complex Fuzzy Dice Similarity Measure (CFDSM), and Complex Fuzzy Jaccard Similarity Measure (CFJSM) together with their weighted versions are proposed. Those measures are integrated into the M-CFIS-R system by the idea of granular computing such that only important and dominant rules are being kept in the system. The difference and advantage of M-CFIS-R against M-CFIS is the usage of the training process in which the rule base is repeatedly changed toward the original base set until the performance is better. By doing so, the new rule base in M-CFIS-R would improve the performance of the whole system. Experiments on various decision-making datasets demonstrate that the proposed M-CFIS-R performs better than M-CFIS.


2019 ◽  
Vol 50 (4) ◽  
pp. 991-1001 ◽  
Author(s):  
Mohammad Ashrafi ◽  
Lloyd H. C. Chua ◽  
Chai Quek

Abstract Recent advancements in neuro-fuzzy models (NFMs) have made possible the implementation of dynamic rule base systems. This is in comparison with static applications commonly seen in global NFMs such as the Adaptive-Network-Based Fuzzy Inference System (ANFIS) model widely used in hydrological modeling. This study underlines key differences between local and global NFMs with an emphasis on rule base dynamics, in the context of two common flow forecast applications. A global NFM, ANFIS, and two local NFMs, Dynamic Evolving Neural-Fuzzy Inference System (DENFIS) and Generic Self-Evolving Takagi-Sugeno-Kang (GSETSK), were tested. Results from all NFMs compared favorably when benchmarked against physically based models. Rainfall–runoff modeling is a complex process which benefits from the advanced rule generation and pruning mechanisms in GSETSK, resulting in a more compact rule base. Although ANFIS resulted in the same number of rules, this came about at the expense of having the need for a large training dataset. All NFMs generated a similar number of rules for the river routing application, although local NFMs yielded better results for forecasts at longer lead times. This is attributed to the fact that the routing procedure is less complex and can be adequately modeled by static NFMs.


Author(s):  
S. Bhattacharya ◽  
S. Chowdhury ◽  
S. Roy

In this paper an interactive recommending agent is proposed which helps an e-learner to enhance the quality of learning experience resulting in efficient achievement of learning objectives. The agent achieves this with the help of a fuzzy rule base working on a variety of learning materials and recommending the appropriate learning path through them. In a learner-centric environment the learning behaviour of a learner may vary to a great extent due to the characteristics of the learner and his environment. Students are often misled while choosing the appropriate path of web learning tools owing to non-availability of a human teacher/guide. By the response of a learner to different positive and negative motivation factors the proposed system employs a fuzzy machine that is fed with realization parameters e.g. Satisfied, Depressed etc. The fuzzy machine working on the paradigm of fuzzy inference system processes these realization parameters with the help of a fuzzy rule base to produce the crisp measures of the learner’s cognitive states in terms of Belief, Behaviour and Attitude. On the basis of these defuzzified crisp diagnostic parameters the proposed system will enhanced the quality of learning experience of an e-learner. To ensure this the system will provide more detailed discussion on the subject matter along with some additional learning tools. Learners often get confused to select the proper tools among various. Therefore the proposed system will also suggest most popular path among those learners with the same understanding. This recommendation comes from the analysis of data mining result. The system was tested with a wide variety of school-level students. The response obtained indicates that it is able to enhance the quality of learning experience through its recommendation.


2016 ◽  
Vol 2 (2) ◽  
pp. 60
Author(s):  
Abidatul Izzah ◽  
Ratna Widyastuti

AbstrakPerguruan Tinggi merupakan salah satu institusi yang menyimpan data yang sangat informatif jika diolah secara baik. Prediksi kelulusan mahasiswa merupakan kasus di Perguruan Tinggi yang cukup banyak diteliti. Dengan mengetahui prediksi status kelulusan mahasiswa di tengah semester, dosen dapat mengantisipasi atau memberi perhatian khusus pada siswa yang diprediksi tidak lulus. Metode yang digunakan sangat bervariatif termasuk metode Fuzzy Inference System (FIS). Namun dalam implementasinya, proses pembangkitan rule fuzzy sering dilakukan secara random atau berdasarkan pemahaman pakar sehingga tidak merepresentasikan sebaran data. Oleh karena itu, dalam penelitian ini digunakan teknik Decision Tree (DT) untuk membangkitkan rule. Dari uraian tersebut, penelitian bertujuan untuk memprediksi kelulusan mata kuliah menggunakan hybrid FIS dan DT. Data yang digunakan dalam penelitian ini adalah data nilai Posttest, Tugas, Kuis, dan UTS dari 106 mahasiswa Politeknik Kediri pengikut mata kuliah Algoritma dan Struktur Data. Penelitian ini diawali dari membangkitkan 5 rule yang selanjutnya digunakan dalam inferensi. Tahap selanjutnya adalah implementasi FIS dengan tahapan fuzzifikasi, inferensi, dan defuzzifikasi. Hasil yang diperoleh adalah akurasi, sensitivitas, dan spesifisitas  masing-masing adalah 94.33%, 96.55%, dan 84.21%.Kata kunci: Decision Tree, Educational Data Mining, Fuzzy Inference System, Prediksi. AbstractCollege is an institution that holds very informative data if it mined properly. Prediction about student’s graduation is a common case that many discussed. Having the predictions of student’s graduation in the middle semester, lecturer will anticipate or give some special attention to students who would be not passed. The method used to prediction is very varied including Fuzzy Inference System (FIS). However, fuzzy rule process is often generated randomly or based on knowledge experts that not represent the data distribution. Therefore, in this study, we used a Decision Tree (DT) technique for generate the rules. So, the research aims to predict courses graduation using hybrid FIS and DT. Dataset used is the posttest score, tasks score, quizzes score, and middle test score from 106 students of the Polytechnic Kediri who took Algorithms and Data Structures. The research started by generating 5 rules by decision tree. The next is implementation of FIS that consist of fuzzification, inference, and defuzzification. The results show that the classifier give a good result in an accuracy, sensitivity, and specificity respectively was 94.33%, 96.55% and 84.21%.Keywords: Decision Tree, Educational Data Mining, Fuzzy Inference System, Prediction.


2021 ◽  
Vol 11 (19) ◽  
pp. 9083
Author(s):  
Yahya Lambat ◽  
Nick Ayres ◽  
Leandros Maglaras ◽  
Mohamed Amine Ferrag

It is a well known fact that the weakest link in a cyber secure system is the people who configure, manage or use it. Security breaches are persistently being attributed to human error. Social engineered based attacks are becoming more sophisticated to such an extent where they are becoming increasingly more difficult to detect. Companies implement strong security policies as well as provide specific training for employees to minimise phishing attacks, however these practices rely on the individual adhering to them. This paper explores fuzzy logic and in particular a Mamdani type fuzzy inference system to determine an employees susceptibility to phishing attacks. To negate and identify the susceptibility levels of employees to social engineering attacks a Fuzzy Inference System FIS was created through the use of fuzzy logic. The utilisation of fuzzy logic is a novel way in determining susceptibility due to its ability to resemble human reasoning in order to solve complex inputs, or its Interpretability and simplicity to be able to compute with words. This proposed fuzzy inference system is based on a number of criteria which focuses on attributes relating to the individual employee as well as a companies practices and procedures and through this an extensive rule base was designed. The proposed scoring mechanism is a first attempt towards a holistic solution. To accurately predict an employees susceptibility to phishing attacks will in any future system require a more robust and relatable set of human characteristics in relation to the employee and the employer.


Sign in / Sign up

Export Citation Format

Share Document