Self-Dual Abelian Codes in Some Nonprincipal Ideal Group Algebras
The main focus of this paper is the complete enumeration of self-dual abelian codes in nonprincipal ideal group algebrasF2k[A×Z2×Z2s]with respect to both the Euclidean and Hermitian inner products, wherekandsare positive integers andAis an abelian group of odd order. Based on the well-known characterization of Euclidean and Hermitian self-dual abelian codes, we show that such enumeration can be obtained in terms of a suitable product of the number of cyclic codes, the number of Euclidean self-dual cyclic codes, and the number of Hermitian self-dual cyclic codes of length2sover some Galois extensions of the ringF2k+uF2k, whereu2=0. Subsequently, general results on the characterization and enumeration of cyclic codes and self-dual codes of lengthpsoverFpk+uFpkare given. Combining these results, the complete enumeration of self-dual abelian codes inF2k[A×Z2×Z2s]is therefore obtained.