scholarly journals Vibration Response Characteristics of the Cross Tunnel Structure

2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Jinxing Lai ◽  
Kaiyun Wang ◽  
Junling Qiu ◽  
Fangyuan Niu ◽  
Junbao Wang ◽  
...  

It is well known that the tunnel structure will lose its function under the long-term repeated function of the vibration effect. A prime example is the Xi’an cross tunnel structure (CTS) of Metro Line 2 and the Yongningmen tunnel, where the vibration response of the tunnel vehicle load and metro train load to the structure of shield tunnel was analyzed by applying the three-dimensional (3D) dynamic finite element model. The effect of the train running was simulated by applying the time-history curves of vibration force of the track induced by wheel axles, using the fitted formulas for vehicle and train vibration load. The characteristics and the spreading rules of vibration response of metro tunnel structure were researched from the perspectives of acceleration, velocity, displacement, and stress. It was found that vehicle load only affects the metro tunnel within 14 m from the centre, and the influence decreases gradually from vault to spandrel, haunch, and springing. The high-speed driving effect of the train can be divided into the close period, the rising period, the stable period, the declining period, and the leaving period. The stress at haunch should be carefully considered. The research results presented for this case study provide theoretical support for the safety of vibration response of Metro Line 2 structure.

2005 ◽  
Author(s):  
Balaji Gopalan ◽  
Edwin Malkiel ◽  
Jian Sheng ◽  
Joseph Katz

High-speed in-line digital holographic cinematography was used to investigate the diffusion of droplets in locally isotropic turbulence. Droplets of diesel fuel (0.3–0.9mm diameter, specific gravity of 0.85) were injected into a 37×37×37mm3 sample volume located in the center of a 160-liter tank. The turbulence was generated by 4 spinning grids, located symmetrically in the corners of the tank, and was characterized prior to the experiments. The sample volume was back illuminated with two perpendicular collimated beams of coherent laser light and time series of in-line holograms were recorded with two high-speed digital cameras at 500 frames/sec. Numerical reconstruction generated a time series of high-resolution images of the droplets throughout the sample volume. We developed an algorithm for automatically detecting the droplet trajectories from each view, for matching the two views to obtain the three-dimensional tracks, and for calculating the time history of velocity. We also measured the mean fluid motion using 2-D PIV. The data enabled us to calculate the Lagrangian velocity autocorrelation function.


2013 ◽  
Vol 482 ◽  
pp. 155-162
Author(s):  
Si Hui Xu ◽  
Xiao Hui Zhang ◽  
Han Chen

In order to study the effects of high-speed railway in tunnel on vibration response of upper building, the Vehicle-Track-Tunnel-Soil-Building coupling dynamic model was established, and the reaction force of fasteners was used to transmit between Vehicle-Track coupling dynamic model and Tunnel-Soil-Building finite element model. According to modal analysis for typical section of building, sensitive frequency range and sensitive structure locations were obtained. In terms of two conditions, Tunnel-Building Integrated Structure and building are evaded from tunnel for some distance, 1/3 octave vibration level and VLZ vibration acceleration level for all measuring points were calculated to analyze the vibration response of building. The results are shown as follows: for Tunnel-Building Integrated Structure, the overall vibration level is high,which is above 65dB. 2-3dB will be reduced by decreasing speed and improving standard of track. when building is evaded from tunnel for some distance, with larger evaded distance, the vibration response is slighter. However, when evaded distance is above 30m, vibration may be amplified ,so its necessary to select proper distance. Vibration response of structure is most strong when 4 lines meet under building, so strict limitation on meeting condition of trains can effectively reduce vibration level.


2019 ◽  
Vol 9 (21) ◽  
pp. 4660
Author(s):  
Quang Huy Tran ◽  
Jungwon Huh ◽  
Nhu Son Doan ◽  
Van Ha Mac ◽  
Jin-Hee Ahn

While the container crane is an important part of daily port operations, it has received little attention in comparison with other infrastructures such as buildings and bridges. Crane collapses owing to earthquakes affect the operation of the port and indirectly impact the economy. This study proposes fragility analyses for various damage levels of a container crane, thus enabling the port owner and partners to better understand the seismic vulnerability presented by container cranes. A large number of nonlinear time-history analyses were applied for a three-dimensional (3D) finite element model to quantify the vulnerability of a Korean case-study container crane considering the uplift and derailment behavior. The uncertainty of the demand and capacity of the crane structures were also considered through random variables, i.e., the elastic modulus of members, ground motion profile, and intensity. The results analyzed in the case of the Korean container crane indicated the probability of exceeding the first uplift with or without derailment before the crane reached the structure’s limit states. This implies that under low seismic excitation, the crane may be derailed without any structural damage. However, when the crane reaches the minor damage state, this condition is always coupled with a certain probability of uplift with or without derailment. Furthermore, this study proposes fragility curves developed for different structural periods to enable port stakeholders to assess the risk of their container crane.


2011 ◽  
Vol 382 ◽  
pp. 80-83 ◽  
Author(s):  
Zhen Zhong Shen ◽  
Hua Chun Ren

According to the practical situation, the 3-D finite element model of Sandaowan underground powerhouse caverns on Taolai River is set up for analyzing the behaviors under earthquake action. Based on static stress field of the surrounding rock mass, and with the selection of appropriate seismic waves for dynamic time-history analysis method, the dynamic responses of underground powerhouse caverns are analyzed. It is shown that the time-history waveform of dynamic displacement of given points has a very similar variation regularity with that of acceleration, and the wave phases of both are almost synchronous. The dynamic displacements and principal stresses of the given points on rock walls are with the vibration of low-frequency characteristics, the acceleration response is with the vibration of high-frequency characteristics.


2013 ◽  
Vol 444-445 ◽  
pp. 264-269 ◽  
Author(s):  
Rui Zhen Fei ◽  
Li Min Peng ◽  
Cheng Hua Shi ◽  
Wei Chao Yang

Based on the three-dimensional incompressible Navier - Stokes equations and the standard turbulent model, this paper develops a tunnel-air-train simulation model. Time-history variation rules and space distribution characteristics of train wind are studied at 200km per hour, and safety avoidance distance on evacuation passageways is further discussed. The results show that: Train wind is complex three-dimensional flow which is changed with time and space, since personnel safety may be threatened by train wind. Therefore, effective measures should be taken to avoid accidents.


2013 ◽  
Vol 663 ◽  
pp. 80-86
Author(s):  
Hai Qing Liu ◽  
Ming Ji Ma ◽  
Gui Jun Wang

More and more irregular structure appears in people's lives, while the theoretical research and disaster experience show that the irregular structure in the earthquake will produce translation and torsion coupled spatial vibration, and sometimes it will cause very serious consequences. Being based on the practical engineering -the Castle Hotel of Dalian, this text makes use of finite element analysis software--- ANSYS. By analyzing the dynamic characteristics and seismic response, we get the self-vibration characteristics of the structure and the time history curve of top level displacement and acceleration of the structure under the effect of earthquake forces. The calculation results indicate that it is effective and reasonable to set up three-dimensional finite element model used for the analyzing of seismic response by ANSYS.


2013 ◽  
Vol 4 (1) ◽  
pp. 167-183 ◽  
Author(s):  
G. Kouroussis ◽  
O. Verlinden

Abstract. The multibody approach is now recognized as a reliable and mature computer aided engineering tool. Namely, it is commonly used in industry for the design of road or railway vehicles. The paper presents a framework developed for predicting the vibrations induced by railway transportation. Firstly, the vehicle/track subsystem is simulated, on the basis of the home-made C++ library EasyDyn, by mixing the multibody model of the vehicle and the finite element model of the track, coupled to each other through the wheel/rail contact forces. Only the motion in the vertical plane is considered, assuming a total symmetry between left and right rails. This first step produces the time history of the forces exerted by the ballast on the foundation, which are then applied to a full 3-D FEM model of the soil, defined under the commercial software ABAQUS. The paper points out the contribution of the pitch motion of the bogies and carbodies which were neglected in previous publications, as well as the interest of the so-called coupled-lumped mass model (CLM) to represent the influence of the foundation in the track model. The potentialities of the model are illustrated on the example of the Thalys high-speed train, riding at 300 km h−1 on the Belgian site of Mévergnies.


Author(s):  
Quang Huy Tran ◽  
Jungwon Huh ◽  
Nhu Son Doan ◽  
Van Ha Mac ◽  
Jin-Hee Ahn

While the container crane is an important part of daily port operations, it has received little attention compared with other infrastructures, such as buildings and bridges. Crane collapse due to earthquake affects the operation of the port, and indirectly impacts the economy. This study proposes fragility analyses for various damage levels of the container crane that allow the port owner and partners to better understand the seismic vulnerability presented by container cranes. A large quantity of nonlinear time history analyses was applied for a three-dimensional (3D) finite element model to quantify the vulnerability of the container crane in considering the uplift and derailment behavior. The uncertainty of demand and capacity of the crane structures were also considered through random variables, i.e. elastic modulus of members, ground motion profile, and intensity. The results analyzed in the case of a Korean container crane showed that the probability of exceeding the first uplift with or without derailment is shown before the crane reaches the structure’s limit states. This means that under low seismic excitation, the crane might be derailed without any structural damage. But when the crane reaches the minor damage state, it is always coupled with a certain probability of uplift with or without derailment. This study also proposes the fragility curves developed for different structural periods to enable port stakeholders to assess the risk of their container crane.


Author(s):  
T.-J. Chuang ◽  
S. M. Hsu

As magnetic data storage technology moves towards higher areal data density with higher rotational speeds and lower flying heights, the propensity of severe sliding contacts at the head-disk interface is bound to increase. The tribological performance of the head-disk interface will have significant impact on the durability and service life of the hard disk drive (HDD). A 3D finite element model is constructed to simulate the high speed impact event of a slider on the disk surface. For a given design of the disk with known layer thicknesses and properties, as well as that of the slider with its surface texture, the model predicts contact zone, depth force and duration as well as time-history of energy transfer and its partition, substrate stress and plastic zone for a given impact velocity. The effects of the material properties and layer thicknesses on the performance of the HDD are investigated.


Sign in / Sign up

Export Citation Format

Share Document