scholarly journals Recognizing Dew as an Indicator and an Improver of Near-Surface Air Quality

2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Yingying Xu ◽  
Xinyue Zhu

The relationship between dew and airborne particles is important in urban ecosystems, but the capability of dew to remove airborne particles remains unclear. During 2015 in Changchun, China, 74 dew and particle samples were collected simultaneously to investigate their chemical characteristics under normal, fog, and haze conditions. Analyses included measuring total dissolved solids, total suspended particulates, PM2.5 and PM10 concentrations, major cations (NH4+, Na+, K+, Ca2+, and Mg2+), major anions (F−, Cl−, SO42-, and NO3-), and organic and elemental carbon. Results showed that air quality deteriorated during haze but improved in fog. The particle size distributions, major cations, and carbonaceous species documented in the dew and airborne particles demonstrated consistent synchronous patterns with values descending in the order haze > normal > fog conditions. We found that dew is a good indicator of near-surface air quality. Specifically, its water-soluble ions and carbonaceous species could be used to distinguish emission sources and to identify the presence of secondary organic carbon. Dew is more effective at removing airborne particles in normal weather than in haze or fog conditions; PM2.5 removal rates were 21.5%, 15.2%, and 13.7% on normal, foggy, and hazy days, respectively. Dew condensation processes reduce concentrations of gaseous and particulate pollutants in the near-surface layer.

2021 ◽  
Vol 21 (8) ◽  
pp. 6155-6173
Author(s):  
Genevieve Rose Lorenzo ◽  
Paola Angela Bañaga ◽  
Maria Obiminda Cambaliza ◽  
Melliza Templonuevo Cruz ◽  
Mojtaba AzadiAghdam ◽  
...  

Abstract. Fireworks degrade air quality, reduce visibility, alter atmospheric chemistry, and cause short-term adverse health effects. However, there have not been any comprehensive physicochemical and optical measurements of fireworks and their associated impacts in a Southeast Asia megacity, where fireworks are a regular part of the culture. Size-resolved particulate matter (PM) measurements were made before, during, and after New Year 2019 at the Manila Observatory in Quezon City, Philippines, as part of the Cloud, Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex). A high-spectral-resolution lidar (HSRL) recorded a substantial increase in backscattered signal associated with high aerosol loading ∼440 m above the surface during the peak of firework activities around 00:00 (local time). This was accompanied by PM2.5 concentrations peaking at 383.9 µg m−3. During the firework event, water-soluble ions and elements, which affect particle formation, growth, and fate, were mostly in the submicrometer diameter range. Total (>0.056 µm) water-soluble bulk particle mass concentrations were enriched by 5.7 times during the fireworks relative to the background (i.e., average of before and after the firework). The water-soluble mass fraction of PM2.5 increased by 18.5 % above that of background values. This corresponded to increased volume fractions of inorganics which increased bulk particle hygroscopicity, kappa (κ), from 0.11 (background) to 0.18 (fireworks). Potassium and non-sea-salt (nss) SO42- contributed the most (70.9 %) to the water-soluble mass, with their mass size distributions shifting from a smaller to a larger submicrometer mode during the firework event. On the other hand, mass size distributions for NO3-, Cl−, and Mg2+ (21.1 % mass contribution) shifted from a supermicrometer mode to a submicrometer mode. Being both uninfluenced by secondary aerosol formation and constituents of firework materials, a subset of species were identified as the best firework tracer species (Cu, Ba, Sr, K+, Al, and Pb). Although these species (excluding K+) only contributed 2.1 % of the total mass concentration of water-soluble ions and elements, they exhibited the highest enrichments (6.1 to 65.2) during the fireworks. Surface microscopy analysis confirmed the presence of potassium/chloride-rich cubic particles along with capsule-shaped particles in firework samples. The results of this study highlight how firework emissions change the physicochemical and optical properties of water-soluble particles (e.g., mass size distribution, composition, hygroscopicity, and aerosol backscatter), which subsequently alters the background aerosol's respirability, influence on surroundings, ability to uptake gases, and viability as cloud condensation nuclei (CCN).


2020 ◽  
Author(s):  
Genevieve Rose Lorenzo ◽  
Paola Angela Bañaga ◽  
Maria Obiminda Cambaliza ◽  
Melliza Templonuevo Cruz ◽  
Mojtaba Azadi Agdham ◽  
...  

Abstract. Fireworks degrade air quality, reduce visibility, alter atmospheric chemistry, and cause short-term adverse health effects. However, there have not been any comprehensive physicochemical and optical measurements of fireworks and their associated impacts in a Southeast Asia megacity, where fireworks are a regular part of the culture. Size-resolved particulate matter (PM) measurements were made before, during, and after New Year 2019 at the Manila Observatory in Quezon City, Philippines, as part of the Cloud, Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex). A High Spectral Resolution Lidar (HSRL) recorded a substantial increase in backscattered signal associated with high aerosol loading ~440 m above the surface during the peak of firework activities around 00:00 (local time). This was accompanied by PM2.5 concentrations peaking at 383.9 μg m−3. During the firework event, water-soluble ions and elements, which affect particle formation, growth, and fate, were mostly in the submicrometer diameter range. Total (> 0.056 µm) water-soluble bulk particle mass concentrations were enriched by 5.7 times during the fireworks relative to the background (i.e., average of before and after the firework). The water-soluble mass fraction of PM2.5 increased by 18.5 % above that of background values. Bulk particle hygroscopicity, kappa (κ), increased from 0.11 (background) to 0.18 (fireworks). Potassium and non-sea salt (nss) SO42− contributed the most (70.9 %) to the water-soluble mass, with their mass size distributions shifting from a smaller to a larger submicrometer mode during the firework event. On the other hand, mass size distributions for NO3−, Cl−, and Mg2+ (21.1 % mass contribution) shifted from a supermicrometer mode to a submicrometer mode. Being both uninfluenced by secondary aerosol formation and constituents of firework materials, a subset of species were identified as the best firework tracer species (Cu, Ba, Sr, K+, Al, and Pb). Although these species (excluding K+) only contributed 2.1 % of the total mass concentration of water-soluble ions and elements, they exhibited the highest enrichments (6.1 to 65.2) during the fireworks. Surface microscopy analysis confirmed the presence of potassium/chloride-rich cubic particles along with capsule-shaped particles in firework samples. The results of this study highlight how firework emissions change the physicochemical and optical properties of water-soluble particles (e.g., mass size distribution, composition, hygroscopicity, and aerosol backscatter), which subsequently alters the background aerosol's respirability, influence on surroundings, ability to uptake gases, and viability as cloud condensation nuclei (CCN).


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 336
Author(s):  
Shasha Tian ◽  
Yingying Liu ◽  
Jing Wang ◽  
Jian Wang ◽  
Lujian Hou ◽  
...  

As one of the biggest cities in North China, Jinan has been suffering heavy air pollution in recent decades. To better characterize the ambient particulate matter in Jinan during heavy pollution periods, we collected daily PM2.5 (particulate matter with aerodynamic diameters equal to or less than 2.5 μm) filter samples from 15 October 2017 to 31 January 2018 and analyzed their chemical compositions (including inorganic water-soluble ions (WSIs), carbonaceous species, and inorganic elements). The daily average concentration of PM2.5 was 83.5 μg/m3 during the sampling period. A meteorological analysis revealed that both low wind speed and high relative humidity facilitated the occurrence of high PM2.5 pollution episodes. A chemical analysis indicated that high concentrations of water-soluble ions, carbonaceous species, and elements were observed during heavy pollution days. The major constituents of PM2.5 in Jinan were secondary aerosol particles and organic matter based on the results of mass closure. Chemical Mass Balance (CMB) was used to track possible sources and identified that nitrate, sulfate, vehicle exhaust and coal fly ash were the main contributors to PM2.5 during heavy pollution days in Jinan, accounting for 25.4%, 18.6%, 18.2%, and 13.3%, respectively.


2007 ◽  
Vol 186 (1-4) ◽  
pp. 63-73 ◽  
Author(s):  
Pérola C. Vasconcellos ◽  
Rajasekhar Balasubramanian ◽  
Roy E. Bruns ◽  
Odon Sanchez-Ccoyllo ◽  
Maria F. Andrade ◽  
...  

2016 ◽  
Vol 2 (2) ◽  
pp. 71-78
Author(s):  
Yoshika Sekine ◽  
◽  
Nami Takahashi ◽  
Yuri Ohkoshi ◽  
Akihiro Takemasa ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 456
Author(s):  
Huimin Jiang ◽  
Zhongqin Li ◽  
Feiteng Wang ◽  
Xi Zhou ◽  
Fanglong Wang ◽  
...  

We investigated water-soluble ions (WSIs) of aerosol samples collected from 2016 to 2017 in Lanzhou, a typical semi-arid and chemical-industrialized city in Northwest China. WSIs concentration was higher in the heating period (35.68 ± 19.17 μg/m3) and lower in the non-heating period (12.45 ± 4.21 μg/m3). NO3−, SO42−, NH4+ and Ca2+ were dominant WSIs. The concentration of SO42− has decreased in recent years, while the NO3− level was increasing. WSIs concentration was affected by meteorological factors. The sulfur oxidation and nitrogen oxidation ratios (SOR and NOR) exceeded 0.1, inferring the vital contribution of secondary transformation. Meanwhile higher O3 concentration and temperature promoted the homogeneous reaction of SO2. Lower temperature and high relative humidity (RH) were more suitable for heterogeneous reactions of NO2. Three-phase cluster analysis illustrated that the anthropogenic source ions and natural source ions were dominant WSIs during the heating and non-heating periods, respectively. The backward trajectory analysis and the potential source contribution function model indicated that Lanzhou was strongly influenced by the Hexi Corridor, northeastern Qinghai–Tibetan Plateau, northern Qinghai province, Inner Mongolia Plateau and its surrounding cities. This research will improve our understanding of the air quality and pollutant sources in the industrial environment.


2021 ◽  
Vol 102 ◽  
pp. 123-137
Author(s):  
Jie Su ◽  
Pusheng Zhao ◽  
Jing Ding ◽  
Xiang Du ◽  
Youjun Dou

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 926
Author(s):  
Hsing-Wang Li ◽  
Kang-Shin Chen ◽  
Chia-Hsiang Lai ◽  
Ting-Yu Chen ◽  
Yi-Ching Lin ◽  
...  

Atmospheric particulate matters (PMs) were measured in an industry-intensive region in central Taiwan in order to investigate the characteristics and possible sources of PMs. The samplings were simultaneously conducted using a 10- and 3-stage Micro Orifice Uniform Deposit Impactor (MOUDI) from 2017 to 2018. In this study, the characteristics of PMs in this region were evaluated by measuring the mass concentration of PMs and analyzing water-soluble ions and metallic elements, as well as dioxins. Additionally, principal component analysis (PCA) was used to identify the potential sources of PMs. The results showed that the mean concentration of coarse (>1.8 μm), fine (0.1–1.8 μm), and ultrafine (<0.1 μm) particles were 13.60, 14.38, and 3.44 μg/m3, respectively. In the industry-intensive region, the size distribution of ambient particles showed a bi-modal distribution with a high concentration of coarse particles in the spring and summer, while fine particles were dominant in the autumn and winter. The most abundant water-soluble ions of PMs were NO3−, Cl−, and SO42−, while the majority of metallic elements were Na, Fe, Ca, Al, and Mg in different particle sizes. The results of Pearson’s correlation analysis for metals indicated that the particles in the collected air samples were related to the iron and steelmaking industries, coal burning, vehicle exhausts, and high-tech industries. The dioxin concentration ranged from 0.0006 to 0.0017 pg I-TEQ/Nm3. Principal component analysis (PCA) revealed that the contribution to PMs was associated with sea salt, secondary pollutants, and industrial process.


Sign in / Sign up

Export Citation Format

Share Document