scholarly journals Can a Smartphone Diagnose Parkinson Disease? A Deep Neural Network Method and Telediagnosis System Implementation

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Y. N. Zhang

Parkinson’s disease (PD) is primarily diagnosed by clinical examinations, such as walking test, handwriting test, and MRI diagnostic. In this paper, we propose a machine learning based PD telediagnosis method for smartphone. Classification of PD using speech records is a challenging task owing to the fact that the classification accuracy is still lower than doctor-level. Here we demonstrate automatic classification of PD using time frequency features, stacked autoencoders (SAE), and K nearest neighbor (KNN) classifier. KNN classifier can produce promising classification results from useful representations which were learned by SAE. Empirical results show that the proposed method achieves better performance with all tested cases across classification tasks, demonstrating machine learning capable of classifying PD with a level of competence comparable to doctor. It concludes that a smartphone can therefore potentially provide low-cost PD diagnostic care. This paper also gives an implementation on browser/server system and reports the running time cost. Both advantages and disadvantages of the proposed telediagnosis system are discussed.

Author(s):  
Jonas Austerjost ◽  
Robert Söldner ◽  
Christoffer Edlund ◽  
Johan Trygg ◽  
David Pollard ◽  
...  

Machine vision is a powerful technology that has become increasingly popular and accurate during the last decade due to rapid advances in the field of machine learning. The majority of machine vision applications are currently found in consumer electronics, automotive applications, and quality control, yet the potential for bioprocessing applications is tremendous. For instance, detecting and controlling foam emergence is important for all upstream bioprocesses, but the lack of robust foam sensing often leads to batch failures from foam-outs or overaddition of antifoam agents. Here, we report a new low-cost, flexible, and reliable foam sensor concept for bioreactor applications. The concept applies convolutional neural networks (CNNs), a state-of-the-art machine learning system for image processing. The implemented method shows high accuracy for both binary foam detection (foam/no foam) and fine-grained classification of foam levels.


Mekatronika ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 1-12
Author(s):  
Muhammad Nur Aiman Shapiee ◽  
Muhammad Ar Rahim Ibrahim ◽  
Muhammad Amirul Abdullah ◽  
Rabiu Muazu Musa ◽  
Noor Azuan Abu Osman ◽  
...  

The skateboarding scene has arrived at new statures, particularly with its first appearance at the now delayed Tokyo Summer Olympic Games. Hence, attributable to the size of the game in such competitive games, progressed creative appraisal approaches have progressively increased due consideration by pertinent partners, particularly with the enthusiasm of a more goal-based assessment. This study purposes for classifying skateboarding tricks, specifically Frontside 180, Kickflip, Ollie, Nollie Front Shove-it, and Pop Shove-it over the integration of image processing, Trasnfer Learning (TL) to feature extraction enhanced with tradisional Machine Learning (ML) classifier. A male skateboarder performed five tricks every sort of trick consistently and the YI Action camera captured the movement by a range of 1.26 m. Then, the image dataset were features built and extricated by means of  three TL models, and afterward in this manner arranged to utilize by k-Nearest Neighbor (k-NN) classifier. The perception via the initial experiments showed, the MobileNet, NASNetMobile, and NASNetLarge coupled with optimized k-NN classifiers attain a classification accuracy (CA) of 95%, 92% and 90%, respectively on the test dataset. Besides, the result evident from the robustness evaluation showed the MobileNet+k-NN pipeline is more robust as it could provide a decent average CA than other pipelines. It would be demonstrated that the suggested study could characterize the skateboard tricks sufficiently and could, over the long haul, uphold judges decided for giving progressively objective-based decision.


Cataract is a degenerative condition that, according to estimations, will rise globally. Even though there are various proposals about its diagnosis, there are remaining problems to be solved. This paper aims to identify the current situation of the recent investigations on cataract diagnosis using a framework to conduct the literature review with the intention of answering the following research questions: RQ1) Which are the existing methods for cataract diagnosis? RQ2) Which are the features considered for the diagnosis of cataracts? RQ3) Which is the existing classification when diagnosing cataracts? RQ4) And Which obstacles arise when diagnosing cataracts? Additionally, a cross-analysis of the results was made. The results showed that new research is required in: (1) the classification of “congenital cataract” and, (2) portable solutions, which are necessary to make cataract diagnoses easily and at a low cost.


2021 ◽  
Author(s):  
Marko Njirjak ◽  
Erik Otović ◽  
Dario Jozinović ◽  
Jonatan Lerga ◽  
Goran Mauša ◽  
...  

<p>The analysis of non-stationary signals is often performed on raw waveform data or on Fourier transformations of those data, i.e., spectrograms. However, the possibility of alternative time-frequency representations being more informative than spectrograms or the original data remains unstudied. In this study, we tested if alternative time-frequency representations could be more informative for machine learning classification of seismic signals. This hypothesis was assessed by training three well-established convolutional neural networks, using nine different time-frequency representations, to classify seismic waveforms as earthquake or noise. The results were compared to the base model, which was trained on the raw waveform data. The signals used in the experiment were seismogram instances from the LEN-DB seismological dataset (Magrini et al. 2020). The results demonstrate that Pseudo Wigner-Ville and Wigner-Ville time-frequency representations yield significantly better results than the base model, while Margenau-Hill performs significantly worse (P < .01). Interestingly, the spectrogram, which is often used in non-stationary signal analysis, did not yield statistically significant improvements. This research could have a notable impact in the field of seismology because the data that were previously hidden in the seismic noise are now classified more accurately. Moreover, the results might suggest that alternative time-frequency representations could be used in other fields which use non-stationary time series to extract more valuable information from the original data. The potential fields encompass different fields of geophysics, speech recognition, EEG and ECG signals, gravitational waves and so on. This, however, requires further research.</p>


Author(s):  
Charles X. Ling ◽  
John J. Parry ◽  
Handong Wang

Nearest Neighbour (NN) learning algorithms utilize a distance function to determine the classification of testing examples. The attribute weights in the distance function should be set appropriately. We study situations where a simple approach of setting attribute weights using decision trees does not work well, and design three improvements. We test these new methods thoroughly using artificially generated datasets and datasets from the machine learning repository.


2021 ◽  
Vol 5 (3) ◽  
pp. 905
Author(s):  
Muhammad Afrizal Amrustian ◽  
Vika Febri Muliati ◽  
Elsa Elvira Awal

Japanese is one of the most difficult languages to understand and read. Japanese writing that does not use the alphabet is the reason for the difficulty of the Japanese language to read. There are three types of Japanese, namely kanji, katakana, and hiragana. Hiragana letters are the most commonly used type of writing. In addition, hiragana has a cursive nature, so each person's writing will be different. Machine learning methods can be used to read Japanese letters by recognizing the image of the letters. The Japanese letters that are used in this study are hiragana vowels. This study focuses on conducting a comparative study of machine learning methods for the image classification of Japanese letters. The machine learning methods that were successfully compared are Naïve Bayes, Support Vector Machine, Decision Tree, Random Forest, and K-Nearest Neighbor. The results of the comparative study show that the K-Nearest Neighbor method is the best method for image classification of hiragana vowels. K-Nearest Neighbor gets an accuracy of 89.4% with a low error rate.


Author(s):  
Dorra Baccar ◽  
Dirk Söffker

Advanced signal processing approaches such time-frequency analysis are widely used for online evaluation, damage detection, and wear state classification. The idea of this paper is to introduce a new methodology for online examination of wear phenomena in metallic structure by means of acoustic emission (AE), Short-Time Fourier Transform (STFT) and Wavelet Transform (WT). The proposed novel low-cost system is developed for analyzing and monitoring specific signals indicating tribological effects with focus on field programmable gate array (FPGA) implementation of discrete WT (DWT). In addition, experimental results obtained from each approach are given showing the success of the introduced approach.


Sign in / Sign up

Export Citation Format

Share Document