scholarly journals Three-Dimensional Accuracy of Digital Impression versus Conventional Method: Effect of Implant Angulation and Connection Type

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Marzieh Alikhasi ◽  
Hakime Siadat ◽  
Alireza Nasirpour ◽  
Mahya Hasanzade

Purpose. The aim of this in vitro study was to compare the accuracy of different implant impression techniques of the maxillary full arch with tilted implants of two connection types. Materials and Methods. Two maxillary edentulous acrylic resin models with two different implant connections (internal or external) served as a reference model. Each model had two anterior straight and two posterior angulated implants. Ninety impressions were made using an intraoral scanner (Trios 3Shape) with scan bodies for digital impression (groups DII and DIE), a custom open tray with additional silicone for the conventional direct group (groups CDI and CDE), and a custom closed tray with additional silicone for the conventional indirect group (groups CII and CIE) from both internal and external models, respectively. A coordinate-measuring machine (CMM) was used to measure linear and angular displacement for conventional specimens. For digital groups, an optical CMM was used to scan the reference model. STL data sets from the digital specimen were superimposed on STL reference data sets to assess angular and linear deviations. Data were analyzed with three-way ANOVA and t-test at α=0.05. Results. There were significant angular and linear distortion differences among three impression groups (P<0.001), angular distortion differences between internal and external connections (P<0.001), and between straight and tilted implants for either linear (P<0.001) or angular (P=0.002) distortion. The type of the connection and implant angle did not have any effect on linear and angular distortion of the digital technique (p>0.05). Minimum angular and linear distortion was seen for tilted implants in DII and DIE groups (0.36° ± 0.37 and 0.16 ± 0.1 mm). Conclusion. Impression techniques (digital versus conventional) affected the transfer accuracy. Digital techniques demonstrated superior outcome in comparison with conventional methods, and the direct technique was better than the indirect conventional technique. Connection type and implant angulation were other factors that influenced accuracy. However, when digital impression was applied, accuracy was not affected by the type of connection and angulation.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Sonam Gupta ◽  
Aparna Ichalangod Narayan ◽  
Dhanasekar Balakrishnan

Purpose. For a precise fit of multiple implant framework, having an accurate definitive cast is imperative. The present study evaluated dimensional accuracy of master casts obtained using different impression trays and materials with open tray impression technique.Materials and Methods. A machined aluminum reference model with four parallel implant analogues was fabricated. Forty implant level impressions were made. Eight groups (n=5) were tested using impression materials (polyether and vinylsiloxanether) and four types of impression trays, two being custom (self-cure acrylic and light cure acrylic) and two being stock (plastic and metal). The interimplant distances were measured on master casts using a coordinate measuring machine. The collected data was compared with a standard reference model and was statistically analyzed using two-way ANOVA.Results. Statistically significant difference (p<0.05) was found between the two impression materials. However, the difference seen was small (36 μm) irrespective of the tray type used. No significant difference (p>0.05) was observed between varied stock and custom trays.Conclusions. The polyether impression material proved to be more accurate than vinylsiloxanether impression material. The rigid nonperforated stock trays, both plastic and metal, could be an alternative for custom trays for multi-implant impressions when used with medium viscosity impression materials.


Author(s):  
Sunantha Selvaraj ◽  
Jayashree Mohan ◽  
Paul Simon ◽  
Jayachandran Dorairaj

ABSTRACT Introduction The accuracy of an impression remains critical factor in achieving passive fit of an implant framework. The accuracy of the master cast would depend on the type of impression material, the implant impression technique and accuracy of die material. The different impression techniques advocated in the literature for implant impressions include direct (open tray) and indirect (closed tray) techniques. Direct technique use square impression copings that are picked up in the impressions which were used in this study. Objective To evaluate the accuracy of direct impression made with resin splinted and bis-GMA splinted open-tray impression coping. Thus to compare the accuracy of impressions obtained using different splinting materials. Materials and Methods A wax mandibular reference model was fabricated and four implants were placed in the mandibular anterior region using surveyor and acrylized with clear heat cure acrylic resin using injection molding technique. Spaced primary cast was fabricated with a uniform thickness of space about 2 mm. Ten custom trays were fabricated using the light curable resin sheets. Medium body polyether impression material was used. Pentamix was used to get a uniform mix. These trays were randomly divided among the two groups, with five trays in each group. Impression techniques were divided into two groups namely:   Group A - direct impression technique with open tray impression copings splinted with autopolymerizing acrylic resin (GC pattern resin), group B - direct impression technique with open tray impression copings splinted with Protemp TM4 (bis- GMA) syringable temporisation material. Thus, final impressions were made. Total of 10 master casts were fabricated. Evaluation of casts using Dynascope-Vision engineering, Tesa Microhite 2D and coordinate measuring machine were used. Results Statistical comparisons were made using ANOVA test and post-hoc test. Same amount of deviation values obtained with resin splinted and bis-GMA splinted impression copings. The difference in the values might be because of the variation in the rigidity of the materials used. Conclusion Both the splinting material exhibit similar accuracy in impression, so bis-GMA can be used, which is easy to handle, less time consuming, less technique sensitive, rigid and readily available material in clinics, instead of resin splinted material which is technique sensitive, more time consuming and cumbersome. How to cite this article Selvaraj S, Mohan J, Simon P, Dorairaj J. Comparison of Accuracy of Direct Implant Impression Technique using Different Splinting Materials. Int J Prosthodont Restor Dent 2014;4(3):82-89.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Rena Masu ◽  
Shinpei Tanaka ◽  
Minoru Sanda ◽  
Keita Miyoshi ◽  
Kazuyoshi Baba

Abstract Purpose To examine the effect of assistive devices on the precision of digital impression for multiple implants placed in the edentulous maxilla. Methods A reference model representing an edentulous maxilla with four implants was developed. The digital impression group included three settings: Type 0, without an assistive device; Type 1, with an assistive device connecting only neighboring implants; and Type 2, with an assistive device connecting not only neighboring implants but also the two posterior implants, with perpendicular branches from this bar towards the anterior implants. Digital impressions were made five times for each type using three intraoral scanners (IOSs). For conventional method, silicone impressions and verification jigs were prepared; fabricated plaster models were scanned using a laboratory scanner/industrial 3D scanner. In analysis 1, two-way ANOVA analyzed the effect of IOSs and assistive devices on the precision of digital impressions. In analysis 2, one-way ANOVA compared the silicone impressions, the verification jigs, and the most precise group of digital impressions from analysis 1. Results In analysis 1, the IOS and assistive device type (F = 25.22, p < .0001) effects and the interaction between these two factors (F = 5.64, p = .0005) were statistically significant. In analysis 2, CON, VJ, and digital impression with Type 2 devices (most precise devices in analysis 1) were compared; better precision was obtained by digital impression with Type 2 device than by CON and VJ (F = 30.08, p < .0001). Conclusions For implants placed in an edentulous maxilla, digital impressions with assistive devices can provide better precision compared to silicone impressions and verification jigs.


2018 ◽  
Vol 12 (4) ◽  
pp. 264-271 ◽  
Author(s):  
Alireza Izadi ◽  
Fariborz Vafaee ◽  
Arash Shishehian ◽  
Ghodratollah Roshanaei ◽  
Behzad Fathi Afkari

Background. Recently, non-presintered chromium-cobalt (Cr-Co) blocks with the commercial name of Ceramill Sintron were introduced to the market. However, comprehensive studies on the dimensional accuracy and fit of multi-unit frameworks made of these blocks using the coordinate measuring machine (CMM) are lacking. This study aimed to assess and compare the dimensional changes and fit of conventional casting and milled frameworks using Ceramill Sintron. Methods. A metal model was designed and scanned and 5-unit frameworks were fabricated using two techniques: (I) the conventional casting method (n=20): the wax model was designed, milled in the CAD/CAM machine, flasked and invested; (II) the milling method using Ceramill Sintron blocks (n=20): the wax patterns of group 1 were used; Ceramill Sintron blocks were milled and sintered. Measurements were made on the original reference model and the fabricated frameworks using the CMM in all the three spatial dimensions, and dimensional changes were recorded in a checklist. Data were analyzed with descriptive statistics, and the two groups were compared using one-way ANOVA and Tukey test (α=0.05). Results. The fabricated frameworks in both groups showed significant dimensional changes in all the three dimensions. Comparison of dimensional changes between the two groups revealed no significant differences (P>0.05) except for transverse changes (arch) that were significantly greater in Ceramill Sintron frameworks (P<0.05). Conclusion. The two manufacturing processes were the same regarding dimensional changes and the magnitude of marginal gaps and both processes resulted in significant dimensional changes in frameworks. Ceramill Sintron frameworks showed significantly greater transverse changes than the conventional frameworks.


2021 ◽  
Vol 11 (10) ◽  
pp. 4612
Author(s):  
KweonSoo Seo ◽  
Sunjai Kim

Purpose: The aim of this study was to present a new method to analyze the three-dimensional accuracy of complete-arch dental impressions and verify the reliability of the method. Additionally, the accuracies of conventional and intraoral digital impressions were compared using the new method. Methods: A master model was fabricated using 14 milled polyetheretherketone cylinders and a maxillary acrylic model. Each cylinder was positioned and named according to its corresponding tooth position. Twenty-five definitive stone casts were fabricated using conventional impressions of the master model. An intraoral scanner was used to scan the master model 25 times to fabricate 25 digital models. A coordinate measuring machine was used to physically probe each cylinder in the master model and definitive casts. An inspection software was used to probe cylinders of digital models. A three-dimensional part coordinate system was defined and used to compute the centroid coordinate of each cylinder. Intraclass correlation coefficient (ICC) was evaluated to examine the reliability of the new method. Independent two sample t-test was performed to compare the trueness and precision of conventional and intraoral digital impressions (α = 0.05). Results: ICC results showed that, the new method had almost perfect reliability for the measurements of the master model, conventional and digital impression. Conventional impression showed more accurate absolute trueness and precision than intraoral digital impression for most of the tooth positions (p < 0.05). Conclusions: The new method was reliable to analyze the three-dimensional deviation of complete-arch impressions. Conventional impression was still more accurate than digital intraoral impression for complete arches.


Blood ◽  
2021 ◽  
Author(s):  
Alexandra Sipol ◽  
Erik Hameister ◽  
Busheng Xue ◽  
Julia Hofstetter ◽  
Maxim Barenboim ◽  
...  

Cancer cells are in most instances characterized by rapid proliferation and uncontrolled cell division. Hence, they must adapt to proliferation-induced metabolic stress through intrinsic or acquired anti-metabolic stress responses to maintain homeostasis and survival. One mechanism to achieve this is to reprogram gene expression in a metabolism-dependent manner. MondoA (also known as MLXIP), a member of the MYC interactome, has been described as an example of such a metabolic sensor. However, the role of MondoA in malignancy is not fully understood and the underlying mechanism in metabolic responses remains elusive. By assessing patient data sets we found that MondoA overexpression is associated with a worse survival in pediatric common acute lymphoblastic leukemia (B-ALL). Using CRISPR/Cas9 and RNA interference approaches, we observed that MondoA depletion reduces transformational capacity of B-ALL cells in vitro and dramatically inhibits malignant potential in an in vivo mouse model. Interestingly, reduced expression of MondoA in patient data sets correlated with enrichment in metabolic pathways. The loss of MondoA correlated with increased tricarboxylic acid (TCA) cycle activity. Mechanistically, MondoA senses metabolic stress in B-ALL cells by restricting oxidative phosphorylation through reduced PDH activity. Glutamine starvation conditions greatly enhance this effect and highlight the inability to mitigate metabolic stress upon loss of MondoA in B-ALL. Our findings give a novel insight into the function of MondoA in pediatric B-ALL and support the notion that MondoA inhibition in this entity offers a therapeutic opportunity and should be further explored.


2020 ◽  
Vol 31 (3) ◽  
pp. 257-263
Author(s):  
Aline Laignier Soares-Yoshikawa ◽  
Jaime Aparecido Cury ◽  
Cínthia Pereira Machado Tabchoury

Abstract The aim of this in vitro study was to determine the fluoride concentration in silver diamine fluoride (SDF) products and their bioavailability with demineralized dentine. The products evaluated (expected fluoride concentrations) were: I: Saforide 38% (45,283 ppm F); II: Advantage Arrest 38.3 to 43.2% (45,283 to 51,013 ppm F); III: Ancárie 12% (14,100 ppm F); IV: Ancárie 30% (35,400 ppm F), V: Cariestop 12% (14,100 ppm F) and VI: Cariestop 30% (35,400 ppm F). The fluoride concentration was evaluated using an ion-specific electrode (ISE) by direct technique, which was confirmed after microdiffusion. The pH of the products was determined with a pH test strip. For the bioavailability test, demineralized dentine slabs were treated with one of the products for 1 min. Loosely (CaF2-like) and firmly-bound fluoride (FAp) were determined. The fluoride concentration found in the products (mean±SD; ppm F) by the ISE direct technique was: I:53,491±554; II:57,249±1,851; III:4,814±268; IV:5,726±43; V:10,145±468; VI:11,858±575; these values were confirmed after microdiffusion (t-test; p>0.05) and disagree with the declared by the manufacturers. The pH of Ancárie 12 and 30% was 6.0 and 4.5, respectively, in disagreement with the alkaline pH expected for SDF solution and found in the other products evaluated. There was no correlation between either CaF2-like (r=0.221; p=0.337) or FAp (r=-0.144; p=0.830) formed in demineralized dentine and fluoride concentration found in the products. The problems of pH and fluoride concentration found in available professional commercial SDF products suggest that they are not under sanitary surveillance.


2019 ◽  
Author(s):  
Marcus Alvarez ◽  
Elior Rahmani ◽  
Brandon Jew ◽  
Kristina M. Garske ◽  
Zong Miao ◽  
...  

AbstractSingle-nucleus RNA sequencing (snRNA-seq) measures gene expression in individual nuclei instead of cells, allowing for unbiased cell type characterization in solid tissues. Contrary to single-cell RNA seq (scRNA-seq), we observe that snRNA-seq is commonly subject to contamination by high amounts of extranuclear background RNA, which can lead to identification of spurious cell types in downstream clustering analyses if overlooked. We present a novel approach to remove debris-contaminated droplets in snRNA-seq experiments, called Debris Identification using Expectation Maximization (DIEM). Our likelihood-based approach models the gene expression distribution of debris and cell types, which are estimated using EM. We evaluated DIEM using three snRNA-seq data sets: 1) human differentiating preadipocytes in vitro, 2) fresh mouse brain tissue, and 3) human frozen adipose tissue (AT) from six individuals. All three data sets showed various degrees of extranuclear RNA contamination. We observed that existing methods fail to account for contaminated droplets and led to spurious cell types. When compared to filtering using these state of the art methods, DIEM better removed droplets containing high levels of extranuclear RNA and led to higher quality clusters. Although DIEM was designed for snRNA-seq data, we also successfully applied DIEM to single-cell data. To conclude, our novel method DIEM removes debris-contaminated droplets from single-cell-based data fast and effectively, leading to cleaner downstream analysis. Our code is freely available for use at https://github.com/marcalva/diem.


2018 ◽  
Author(s):  
Lisa-Katrin Turnhoff ◽  
Ali Hadizadeh Esfahani ◽  
Maryam Montazeri ◽  
Nina Kusch ◽  
Andreas Schuppert

Translational models that utilize omics data generated in in vitro studies to predict the drug efficacy of anti-cancer compounds in patients are highly distinct, which complicates the benchmarking process for new computational approaches. In reaction to this, we introduce the uniFied translatiOnal dRug rESponsE prEdiction platform FORESEE, an open-source R-package. FORESEE not only provides a uniform data format for public cell line and patient data sets, but also establishes a standardized environment for drug response prediction pipelines, incorporating various state-of-the-art preprocessing methods, model training algorithms and validation techniques. The modular implementation of individual elements of the pipeline facilitates a straightforward development of combinatorial models, which can be used to re-evaluate and improve already existing pipelines as well as to develop new ones. Availability and Implementation: FORESEE is licensed under GNU General Public License v3.0 and available at https://github.com/JRC-COMBINE/FORESEE . Supplementary Information: Supplementary Files 1 and 2 provide detailed descriptions of the pipeline and the data preparation process, while Supplementary File 3 presents basic use cases of the package. Contact: [email protected]


Sign in / Sign up

Export Citation Format

Share Document