FTP: An Approximate Fast Privacy-Preserving Equality Test Protocol for Authentication in Internet of Things
Privacy-preserving string equality test is a fundamental operation of many algorithms, including privacy-preserving authentication in Internet of Things (IoT). Existing secure equality test schemes can theoretically achieve string equality comparison and preserve the private strings. However, they suffer from heavy computation and communication cost, especially while the strings are of hundreds of bits or longer, which is not suitable for IoT applications. In this paper, we propose an approximate Fast privacy-preserving equality Test Protocol (FTP), which can securely complete string equality test and achieve high running efficiency at the cost of little accuracy loss. We strictly analyze the accuracy of our proposed scheme and formally prove its security. Additionally, we leverage extensive simulation experiments to evaluate the running cost, which confirms our high efficiency; for instance, our proposed FTP can securely compare two 256-bit strings within 0.7 seconds on ordinary laptops.