scholarly journals Structure of n-Lie Algebras with Involutive Derivations

Author(s):  
Ruipu Bai ◽  
Shuai Hou ◽  
Yansha Gao

We study the structure of n-Lie algebras with involutive derivations for n≥2. We obtain that a 3-Lie algebra A is a two-dimensional extension of Lie algebras if and only if there is an involutive derivation D on A=A1  ∔  A-1 such that dim A1=2 or dim A-1=2, where A1 and A-1 are subspaces of A with eigenvalues 1 and -1, respectively. We show that there does not exist involutive derivations on nonabelian n-Lie algebras with n=2s for s≥1. We also prove that if A is a (2s+2)-dimensional (2s+1)-Lie algebra with dim A1=r, then there are involutive derivations on A if and only if r is even, or r satisfies 1≤r≤s+2. We discuss also the existence of involutive derivations on (2s+3)-dimensional (2s+1)-Lie algebras.

2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


2018 ◽  
Vol 13 (3) ◽  
pp. 59-63 ◽  
Author(s):  
D.T. Siraeva

Equations of hydrodynamic type with the equation of state in the form of pressure separated into a sum of density and entropy functions are considered. Such a system of equations admits a twelve-dimensional Lie algebra. In the case of the equation of state of the general form, the equations of gas dynamics admit an eleven-dimensional Lie algebra. For both Lie algebras the optimal systems of non-similar subalgebras are constructed. In this paper two partially invariant submodels of rank 3 defect 1 are constructed for two-dimensional subalgebras of the twelve-dimensional Lie algebra. The reduction of the constructed submodels to invariant submodels of eleven-dimensional and twelve-dimensional Lie algebras is proved.


2002 ◽  
Vol 01 (04) ◽  
pp. 413-424 ◽  
Author(s):  
V. D. LYAKHOVSKY ◽  
M. E. SAMSONOV

The twist deformations for simple Lie algebras [Formula: see text] whose twisting elements ℱ are known explicitly are usually defined on the carrier subspace injected in the Borel subalgebra [Formula: see text]. We consider the case where the carrier of the twist intersects nontrivially with both [Formula: see text] and [Formula: see text]. The main element of the new deformation is the parabolic twist ℱ℘ whose carrier is the minimal parabolic subalgebra of simple Lie algebra [Formula: see text]. It has the structure of the algebra of two-dimensional motions, contains [Formula: see text] and intersects nontrivially with [Formula: see text]. The twist ℱ℘ is constructed as a composition of the extended jordanian twist [Formula: see text] and the factor [Formula: see text]. The latter can be considered as a special deformed version of the jordanian twist. The twisted costructure is found for [Formula: see text] and the corresponding universal ℛ-matrix is presented. The parabolic twist can be composed with certain types of chains of extended jordanian twists for algebras A2(n-1). The chains enlarged by the parabolic factor ℱ℘ perform the explicit quantization of the new set of classical r-matrices.


1981 ◽  
Vol 1 (3) ◽  
pp. 361-380 ◽  
Author(s):  
George Wilson

AbstractWe associate to each complex simple Lie algebra g a hierarchy of evolution equations; in the simplest case g = sl(2) they are the modified KdV equations. These new equations are related to the two-dimensional Toda lattice equations associated with g in the same way that the modified KdV equations are related to the sinh-Gordon equation.


2010 ◽  
Vol 82 (3) ◽  
pp. 401-423
Author(s):  
XIN TANG

AbstractLet 𝒰(𝔯(1)) denote the enveloping algebra of the two-dimensional nonabelian Lie algebra 𝔯(1) over a base field 𝕂. We study the maximal abelian ad-nilpotent (mad) associative subalgebras and finite-dimensional Lie subalgebras of 𝒰(𝔯(1)). We first prove that the set of noncentral elements of 𝒰(𝔯(1)) admits the Dixmier partition, 𝒰(𝔯(1))−𝕂=⋃ 5i=1Δi, and establish characterization theorems for elements in Δi, i=1,3,4. Then we determine the elements in Δi, i=1,3 , and describe the eigenvalues for the inner derivation ad Bx,x∈Δi, i=3,4 . We also derive other useful results for elements in Δi, i=2,3,4,5 . As an application, we find all framed mad subalgebras of 𝒰(𝔯(1)) and determine all finite-dimensional nonabelian Lie algebras that can be realized as Lie subalgebras of 𝒰(𝔯(1)) . We also study the realizations of the Lie algebra 𝔯(1) in 𝒰(𝔯(1)) in detail.


2019 ◽  
Vol 62 (S1) ◽  
pp. S77-S98 ◽  
Author(s):  
VOLODYMYR V. BAVULA ◽  
TAO LU

AbstractLet 𝔟 be the Borel subalgebra of the Lie algebra 𝔰𝔩2 and V2 be the simple two-dimensional 𝔰𝔩2-module. For the universal enveloping algebra $\[{\cal A}: = U(\gb \ltimes {V_2})\]$ of the semi-direct product 𝔟⋉V2 of Lie algebras, the prime, primitive and maximal spectra are classified. Please approve edit to the sentence “The sets of completely prime…”.The sets of completely prime ideals of $\[{\cal A}\]$ are described. The simple unfaithful $\[{\cal A}\]$-modules are classified and an explicit description of all prime factor algebras of $\[{\cal A}\]$ is given. The following classes of simple U(𝔟⋉V2)-modules are classified: the Whittaker modules, the 𝕂[X]-torsion modules and the 𝕂[E]-torsion modules.


2009 ◽  
Vol 16 (04) ◽  
pp. 549-566 ◽  
Author(s):  
Shoulan Gao ◽  
Cuipo Jiang ◽  
Yufeng Pei

We study the derivations, the central extensions and the automorphism group of the extended Schrödinger–Virasoro Lie algebra [Formula: see text], introduced by Unterberger in the context of two-dimensional conformal field theory and statistical physics. Moreover, we show that [Formula: see text] is an infinite-dimensional complete Lie algebra, and the universal central extension of [Formula: see text] in the category of Leibniz algebras is the same as that in the category of Lie algebras.


Author(s):  
Sandro Mattarei

Abstract A thin Lie algebra is a Lie algebra $L$ , graded over the positive integers, with its first homogeneous component $L_1$ of dimension two and generating $L$ , and such that each non-zero ideal of $L$ lies between consecutive terms of its lower central series. All homogeneous components of a thin Lie algebra have dimension one or two, and the two-dimensional components are called diamonds. Suppose the second diamond of $L$ (that is, the next diamond past $L_1$ ) occurs in degree $k$ . We prove that if $k>5$ , then $[Lyy]=0$ for some non-zero element $y$ of $L_1$ . In characteristic different from two this means $y$ is a sandwich element of $L$ . We discuss the relevance of this fact in connection with an important theorem of Premet on sandwich elements in modular Lie algebras.


Sign in / Sign up

Export Citation Format

Share Document