scholarly journals In-Network Data Processing in Software-Defined IoT with a Programmable Data Plane

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ki-Wook Kim ◽  
Sung-Gi Min ◽  
Youn-Hee Han

Making an SDN data plane flexible enough to satisfy the various requirements of heterogeneous IoT applications is very desirable in terms of software-defined IoT (SD-IoT) networking. Network devices with a programmable data plane provide an ability to dynamically add new packet- and data-processing procedures to IoT applications. The previously proposed solutions for the addition of the programmability feature to the SDN data plane provide extensibility for the packet-forwarding operations of new protocols, but IoT applications need a more flexible programmability for in-network data-processing operations (e.g., the sensing-data aggregation from thousands of sensor nodes). Moreover, some IoT models such as OMG DDS, oneM2M, and Eclipse SCADA use the publish-subscribe model that is difficult to represent using the operations of the existing message-centric data-plane models. We introduce a new in-network data-processing scheme for the SD-IoT data plane that defines an event-driven data-processing model that can express a variety of in-network data-processing cases in the SD-IoT environment. Also, the proposed model comprises a language for the programming of the data-processing procedures, while a flexible data-plane structure that can install and execute the programs at runtime is additionally presented. We demonstrate the flexibility of the proposed scheme by using sample programs in a number of example SD-IoT cases.

2017 ◽  
Vol 11 (1) ◽  
pp. 35-51 ◽  
Author(s):  
Mukesh Kumar ◽  
Kamlesh Dutta

Wireless networks are used by everyone for their convenience for transferring packets from one node to another without having a static infrastructure. In WSN, there are some nodes which are light weight, small in size, having low computation overhead, and low cost known as sensor nodes. In literature, there exists many secure data aggregation protocols available but they are not sufficient to detect the malicious node. The authors require a better security mechanism or a technique to secure the network. Data aggregation is an essential paradigm in WSN. The idea is to combine data coming from different source nodes in order to achieve energy efficiency. In this paper, the authors proposed a protocol for worm hole attack detection during data aggregation in WSN. Main focus is on wormhole attack detection and its countermeasures.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ruiliang He ◽  
Hua Dai ◽  
Geng Yang ◽  
Taochun Wang ◽  
Jingjing Bao

In two-tiered wireless sensor networks, storage nodes take charge of both storing the sensing data items and processing the query request issued by the base station. Due to their important role, storage nodes are more attractive to adversaries in a hostile environment. Once a storage node is compromised, attackers may falsify or abandon the data when answering the query issued by the base station, which will make the base station get incorrect or incomplete result. This paper proposes an efficient top-kquery processing scheme with result integrity verification named as ETQ-RIV in two-tiered sensor networks. According to the basic idea that sensor nodes submit some encoded message containing the sequence relationship as proof information for verification along with their collected sensing data items, a data binding and collecting protocol and a verifiable query response protocol are proposed and described in detail. Detailed quantitative analysis and evaluation experiments show that ETQ-RIV performs better than the existing work in both communication cost and query result redundancy rate.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hongsheng Yin ◽  
Honggang Qi ◽  
Jingwen Xu ◽  
Xin Huang ◽  
Anping He

The sensor nodes of multitask wireless network are constrained in performance-driven computation. Theoretical studies on the data processing model of wireless sensor nodes suggest satisfying the requirements of high qualities of service (QoS) of multiple application networks, thus improving the efficiency of network. In this paper, we present the priority based data processing model for multitask sensor nodes in the architecture of multitask wireless sensor network. The proposed model is deduced with the M/M/1 queuing model based on the queuing theory where the average delay of data packets passing by sensor nodes is estimated. The model is validated with the real data from the Huoerxinhe Coal Mine. By applying the proposed priority based data processing model in the multitask wireless sensor network, the average delay of data packets in a sensor nodes is reduced nearly to 50%. The simulation results show that the proposed model can improve the throughput of network efficiently.


Author(s):  
Nadjib Benaouda ◽  
Ammar Lahlouhi

Purpose The purpose of this paper is to present a novel delay-bounded and power-efficient routing for in-network data aggregation, called DPIDA, which aims to ensure a compromise between the energy consumed during the collection of data sensed by a set of source sensor nodes and their timely delivery to the sink node. Design/methodology/approach Based on the ant-colony-optimization metaheuristic, the proposal establishes a routing structure that maximizes the number of overlapping routes and minimizes the total transmission power while ensuring delay-bounded paths and a symmetric transmission power assignment to reliably deliver the sensed data. Findings The proposal was extensively compared to two other known protocols regarding different keys factors. Simulation results, including topology snapshots, show the ability of DPIDA to ensure the energy–latency tradeoff. They also show the superiority of DPIDA compared to the two considered protocols. Originality/value This paper presents a novel ant-based protocol that uses in-network data aggregation and transmission power-adjustment techniques to conserve the energy of nodes while ensuring delay-bounded paths and a reliable deliverance of data which is ensured by providing a symmetric transmission power assignment.


2020 ◽  
pp. 1332-1349
Author(s):  
Mukesh Kumar ◽  
Kamlesh Dutta

Wireless networks are used by everyone for their convenience for transferring packets from one node to another without having a static infrastructure. In WSN, there are some nodes which are light weight, small in size, having low computation overhead, and low cost known as sensor nodes. In literature, there exists many secure data aggregation protocols available but they are not sufficient to detect the malicious node. The authors require a better security mechanism or a technique to secure the network. Data aggregation is an essential paradigm in WSN. The idea is to combine data coming from different source nodes in order to achieve energy efficiency. In this paper, the authors proposed a protocol for worm hole attack detection during data aggregation in WSN. Main focus is on wormhole attack detection and its countermeasures.


2018 ◽  
Vol 78 (4) ◽  
pp. 4311-4326 ◽  
Author(s):  
Weijing Song ◽  
Lizhe Wang ◽  
Peng Liu ◽  
Kim-Kwang Raymond Choo

Author(s):  
Chao-Yaug Liao ◽  
Jean-Claude Léon ◽  
Cédric Masclet ◽  
Michel Bouriau ◽  
Patrice L. Baldeck ◽  
...  

Based on the two-photon polymerization technique, an analysis of product shapes is performed so that their digital manufacturing models can be efficiently processed for micromanufacture. To describe microstructures, this analysis shows that nonmanifold models are of interest. These models can be intuitively understood as combinations of wires, surfaces, and volumes. Minimum acceptable wall thickness, wire dimension, and laser density of energy are among the elements justifying this category of models. Taking into account this requirement, a model preparation and processing scheme is proposed that widens the laser beam trajectories with a concept of extended layer manufacturing technique. A tessellation process suited for non-manifold models has been developed for computer-aided design models imported from standard for the exchange of product files. After tessellation, several polyhedral subdomains form a nonmanifold polyhedron. To plan the trajectories of the laser beam, adaptive slicing and global 3D hatching processes as well as a “welding” process (for joining subdomains of different dimensionality) have been combined. Finally, two nonmanifold microstructures are fabricated according to the proposed model preparation and processing scheme.


Sign in / Sign up

Export Citation Format

Share Document