scholarly journals Chover-Type Laws of the Iterated Logarithm for Kesten-Spitzer Random Walks in Random Sceneries Belonging to the Domain of Stable Attraction

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Wensheng Wang ◽  
Anwei Zhu

Let X={Xi,i≥1} be a sequence of real valued random variables, S0=0 and Sk=∑i=1kXi  (k≥1). Let σ={σ(x),x∈Z} be a sequence of real valued random variables which are independent of X’s. Denote by Kn=∑k=0nσ(⌊Sk⌋)  (n≥0) Kesten-Spitzer random walk in random scenery, where ⌊a⌋ means the unique integer satisfying ⌊a⌋≤a<⌊a⌋+1. It is assumed that σ’s belong to the domain of attraction of a stable law with index 0<β<2. In this paper, by employing conditional argument, we investigate large deviation inequalities, some sufficient conditions for Chover-type laws of the iterated logarithm and the cluster set for random walk in random scenery Kn. The obtained results supplement to some corresponding results in the literature.

2006 ◽  
Vol 43 (1) ◽  
pp. 79-114
Author(s):  
Han-Ying Liang ◽  
Jong-Il Baek ◽  
Josef Steinebach

Let X1, X2,… be independent, but not necessarily identically distributed random variables in the domain of attraction of a stable law with index 0<a<2. This paper uses Mn=max 1?i?n|Xi| to establish a self-normalized law of the iterated logarithm (LIL) for partial sums. Similarly self-normalized increments of partial sums are studied as well. In particular, the results of self-normalized sums of Horváth and Shao[9]under independent and identically distributed random variables are extended and complemented. As applications, some corresponding results for self-normalized weighted sums of iid random variables are also concluded.


1978 ◽  
Vol 1 (3) ◽  
pp. 339-372
Author(s):  
Patrick L. Brockett

SupposeS={{Xnj,   j=1,2,…,kn}}is an infinitesimal system of random variables whose centered sums converge in law to a (necessarily infinitely divisible) distribution with Levy representation determined by the triple(γ,σ2,M). If{Yj,   j=1,2,…}are independent indentically distributed random variables independent ofS, then the systemS′={{YjXnj,j=1,2,…,kn}}is obtained by randomizing the scale parameters inSaccording to the distribution ofY1. We give sufficient conditions on the distribution ofYin terms of an index of convergence ofS, to insure that centered sums fromS′be convergent. If such sums converge to a distribution determined by(γ′,(σ′)2,Λ), then the exact relationship between(γ,σ2,M)and(γ′,(σ′)2,Λ)is established. Also investigated is when limit distributions fromSandS′are of the same type, and conditions insuring products of random variables belong to the domain of attraction of a stable law.


2016 ◽  
Vol 48 (3) ◽  
pp. 672-690 ◽  
Author(s):  
Hui He

Abstract Given a supercritical Galton‒Watson process {Zn} and a positive sequence {εn}, we study the limiting behaviors of ℙ(SZn/Zn≥εn) with sums Sn of independent and identically distributed random variables Xi and m=𝔼[Z1]. We assume that we are in the Schröder case with 𝔼Z1 log Z1<∞ and X1 is in the domain of attraction of an α-stable law with 0<α<2. As a by-product, when Z1 is subexponentially distributed, we further obtain the convergence rate of Zn+1/Zn to m as n→∞.


2009 ◽  
Vol 41 (2) ◽  
pp. 452-468 ◽  
Author(s):  
Brice Franke ◽  
Tatsuhiko Saigo

In this article we analyse the behaviour of the extremes of a random walk in a random scenery. The random walk is assumed to be in the domain of attraction of a stable law, and the scenery is assumed to be in the domain of attraction of an extreme value distribution. The resulting random sequence is stationary and strongly dependent if the underlying random walk is recurrent. We prove a limit theorem for the extremes of the resulting stationary process. However, if the underlying random walk is recurrent, the limit distribution is not in the class of classical extreme value distributions.


2009 ◽  
Vol 41 (02) ◽  
pp. 452-468 ◽  
Author(s):  
Brice Franke ◽  
Tatsuhiko Saigo

In this article we analyse the behaviour of the extremes of a random walk in a random scenery. The random walk is assumed to be in the domain of attraction of a stable law, and the scenery is assumed to be in the domain of attraction of an extreme value distribution. The resulting random sequence is stationary and strongly dependent if the underlying random walk is recurrent. We prove a limit theorem for the extremes of the resulting stationary process. However, if the underlying random walk is recurrent, the limit distribution is not in the class of classical extreme value distributions.


1987 ◽  
Vol 101 (2) ◽  
pp. 301-312 ◽  
Author(s):  
Erich Haeusler ◽  
David M. Mason

AbstractLet X1, X2, …, be a sequence of independent random variables with common distribution function F in the domain of attraction of a stable law and, for each n ≥ 1, let X1, n ≤ … ≤ Xn, n denote the order statistics based on the first n of these random variables. It is shown that sums of the middle portion of the order statistics of the form , where (kn)n ≥ 1 is a sequence of non-negative integers such that kn → ∞ and kn/n → 0 as n → ∞ at an appropriate rate, can be normalized and centred so that the law of the iterated logarithm holds. The method of proof is based on the almost sure properties of weighted uniform empirical processes.


Author(s):  
R. A. Maller

AbstractThe main purpose of the paper is to give necessary and sufficient conditions for the almost sure boundedness of (Sn – αn)/B(n), where Sn = X1 + X2 + … + XmXi being independent and identically distributed random variables, and αnand B(n) being centering and norming constants. The conditions take the form of the convergence or divergence of a series of a geometric subsequence of the sequence P(Sn − αn > a B(n)), where a is a constant. The theorem is distinguished from previous similar results by the comparative weakness of the subsidiary conditions and the simplicity of the calculations. As an application, a law of the iterated logarithm general enough to include a result of Feller is derived.


1969 ◽  
Vol 6 (2) ◽  
pp. 419-429 ◽  
Author(s):  
C.C. Heyde

Let Xi, i = 1, 2, 3, … be a sequence of independent and identically distributed random variables which belong to the domain of attraction of a stable law of index a. Write S0= 0, Sn = Σ i=1nXi, n ≧ 1, and Mn = max0 ≦ k ≦ nSk. In the case where the Xi are such that Σ1∞n−1Pr(Sn > 0) < ∞, we have limn→∞Mn = M which is finite with probability one, while in the case where Σ1∞n−1Pr(Sn < 0) < ∞, a limit theorem for Mn has been obtained by Heyde [9]. The techniques used in [9], however, break down in the case Σ1∞n−1Pr(Sn < 0) < ∞, Σ1∞n−1Pr(Sn > 0) < ∞ (the case of oscillation of the random walk generated by the Sn) and the only results available deal with the case α = 2 (Erdos and Kac [5]) and the case where the Xi themselves have a symmetric stable distribution (Darling [4]). In this paper we obtain a general limit theorem for Mn in the case of oscillation.


1973 ◽  
Vol 16 (2) ◽  
pp. 173-177 ◽  
Author(s):  
D. R. Beuerman

Let Xl,X2,X3, … be a sequence of independent and identically distributed (i.i.d.) random variables which belong to the domain of attraction of a stable law of index α≠1. That is,1whereandwhere L(n) is a function of slow variation; also take S0=0, B0=l.In §2, we are concerned with the weak convergence of the partial sum process to a stable process and the question of centering for stable laws and drift for stable processes.


Sign in / Sign up

Export Citation Format

Share Document