scholarly journals A Simplified Inverse Dynamics Modelling Method for a Novel Rehabilitation Exoskeleton with Parallel Joints and Its Application to Trajectory Tracking

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Qianqian Fang ◽  
Ge Li ◽  
Tian Xu ◽  
Jie Zhao ◽  
Hegao Cai ◽  
...  

In this paper, a new modular upper limb rehabilitation exoskeleton, which is actuated by a parallel mechanical structure, is designed to help stroke patients. For analysing the relationship between motor torque and joint torque of the novel exoskeleton, a conversion algorithm mapping motor motion to joint motion is developed here. Then, to simplify the dynamics model of exoskeleton with parallel actuated joints, the serial equivalence configuration dynamics of the exoskeleton is established to be equivalent to the parallel joints dynamics. Afterwards, a torque controller used for our exoskeleton is designed based on the proposed conversion algorithm and the inverse dynamics of exoskeleton. It should be noted that the controller mentioned above combines both conversion algorithm and joint position decoupling. At last, for verifying the effectiveness of the proposed algorithms, a trajectory tracking simulation is given, and the simulated results show the proposed algorithms are valid.

Author(s):  
Sumit Aole ◽  
Irraivan Elamvazuthi ◽  
Laxman Waghmare ◽  
Balasaheb Patre ◽  
Fabrice Meriaudeau

Trajectory tracking in upper limb rehabilitation exercises is utilized for repeatability of joint movement to improve the patient’s recovery in the early stages of rehabilitation. In this article, non-linear active disturbance rejection control as a combination of non-linear extended-state observer and non-linear state error feedback is used for the sinusoidal trajectory tracking control of the two-link model of an upper limb rehabilitation exoskeleton. The two links represent movements like flexion/extension for both the shoulder joint and the elbow joint in the sagittal plane. The Euler–Lagrange method was employed to acquire a dynamic model of an upper limb rehabilitation exoskeleton. To examine the efficacy and robustness of the proposed method, four disturbances cases in simulation studies with 20% parameter variation were applied. It was found that the non-linear active disturbance rejection control is robust against disturbances and achieves better tracking as compared to proportional–integral–derivative and existing conventional active disturbance rejection control method.


2014 ◽  
Vol 24 (6) ◽  
pp. 2527-2535 ◽  
Author(s):  
Yanyan Chen ◽  
Ge Li ◽  
Yanhe Zhu ◽  
Jie Zhao ◽  
Hegao Cai

2014 ◽  
Vol 602-605 ◽  
pp. 416-419
Author(s):  
Zhuo Li ◽  
Meng Yang Zhao ◽  
Liang Zhou

Driving comfort is one of the most important indexes for automobile comfort evaluation. The joint torque calculation model of the lower limb in driving posture is established in the presented work firstly. The relationship between cab layout parameters and the joint torque can be obtained through dynamical simulation in the MATLAB by employing Kane method. A new method based on muscular forces is proposed to evaluate the automobile comfortableness. The force of each muscle can be obtained by employing static optimization algorithm of inverse dynamics. The impact of cab layout parameters , joint torque and the muscular forces on driving comfort and the relationship between them can be found through the analysis. As an reference, these parameters can be used to optimize the cab and offer an important support for its optimization.


2018 ◽  
Vol 232 ◽  
pp. 02032
Author(s):  
Zhiming Wang ◽  
Lizhen Cui ◽  
Zhenglong Cai ◽  
Changfu Pang

With the rapid development of science and technology, robots are widely used in rehabilitation training. According to the physiological structure of human lower limbs and gait characteristics of walking, a lower limb rehabilitation robot is designed in this paper. We design the structure in a form of exoskeleton with three degrees of freedom in which kinematics analysis is carried out by the D-H coordinate transformation method. And then we obtain the relationship between the end effector and the angle of each joint. In addition, the relationship between end effector speed and joint speed is obtained through Jacobian matrix and Lagrange equilibrium method is used for dynamic analysis. The joint torque is calculated through the joint speed and three dimensional modeling of lower limb rehabilitation robot was reconstructed by Pro-e. Finally, the driving mode is selected and calculated.


2008 ◽  
Vol 20 (6) ◽  
pp. 863-871 ◽  
Author(s):  
Tatsuya Okada ◽  
◽  
Takashi Imamura ◽  
Takanori Miyoshi ◽  
Kazuhiko Terashima ◽  
...  

This article proposes a new muscle strength estimation method for upper limbs. It uses an inverse model of a musculo-skeletal model based on the muscle force applied on joints as well as the arrangement of the muscles. We did basic analyses of the parameters of the shape of a living body from magnetic resonance imaging (MRI) images and electromyography (EMG) in order to express isometric motion using the musculo-skeletal model. The model shows high reproducibility of a living body's isometric motion. We propose two easy methods of estimating muscle strength without optimization calculations and using a model which is the inverse of the musculo-skeletal model: a method based on output force distribution and a method based on joint torque distribution. We have validated them via experiments.


2020 ◽  
Author(s):  
Agnieszka Wykowska ◽  
Jairo Pérez-Osorio ◽  
Stefan Kopp

This booklet is a collection of the position statements accepted for the HRI’20 conference workshop “Social Cognition for HRI: Exploring the relationship between mindreading and social attunement in human-robot interaction” (Wykowska, Perez-Osorio & Kopp, 2020). Unfortunately, due to the rapid unfolding of the novel coronavirus at the beginning of the present year, the conference and consequently our workshop, were canceled. On the light of these events, we decided to put together the positions statements accepted for the workshop. The contributions collected in these pages highlight the role of attribution of mental states to artificial agents in human-robot interaction, and precisely the quality and presence of social attunement mechanisms that are known to make human interaction smooth, efficient, and robust. These papers also accentuate the importance of the multidisciplinary approach to advance the understanding of the factors and the consequences of social interactions with artificial agents.


ROBOT ◽  
2011 ◽  
Vol 33 (3) ◽  
pp. 307-313 ◽  
Author(s):  
Baoguo XU ◽  
Si PENG ◽  
Aiguo SONG

ROBOT ◽  
2012 ◽  
Vol 34 (5) ◽  
pp. 539 ◽  
Author(s):  
Lizheng PAN ◽  
Aiguo SONG ◽  
Guozheng XU ◽  
Huijun LI ◽  
Baoguo XU

2020 ◽  
Vol 17 (9) ◽  
pp. 1084-1101
Author(s):  
Tingjuan Wu ◽  
Xu Yao ◽  
Guan Wang ◽  
Xiaohe Liu ◽  
Hongfei Chen ◽  
...  

Background: Oleanolic Acid (OA) is a ubiquitous product of triterpenoid compounds. Due to its inexpensive availability, unique bioactivities, pharmacological effects and non-toxic properties, OA has attracted tremendous interest in the field of drug design and synthesis. Furthermore, many OA derivatives have been developed for ameliorating the poor water solubility and bioavailability. Objective: Over the past few decades, various modifications of the OA framework structure have led to the observation of enhancement in bioactivity. Herein, we focused on the synthesis and medicinal performance of OA derivatives modified on A-ring. Moreover, we clarified the relationship between structures and activities of OA derivatives with different functional groups in A-ring. The future application of OA in the field of drug design and development also was discussed and inferred. Conclusion: This review concluded the novel achievements that could add paramount information to the further study of OA-based drugs.


Sign in / Sign up

Export Citation Format

Share Document