scholarly journals Finding Community Modules of Brain Networks Based on PSO with Uniform Design

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Zhang ◽  
Lingkai Tang ◽  
Bo Liao ◽  
Xiaoshu Zhu ◽  
Fang-Xiang Wu

The brain has the most complex structures and functions in living organisms, and brain networks can provide us an effective way for brain function analysis and brain disease detection. In brain networks, there exist some important neural unit modules, which contain many meaningful biological insights. It is appealing to find the neural unit modules and obtain their affiliations. In this study, we present a novel method by integrating the uniform design into the particle swarm optimization to find community modules of brain networks, abbreviated as UPSO. The difference between UPSO and the existing ones lies in that UPSO is presented first for detecting community modules. Several brain networks generated from functional MRI for studying autism are used to verify the proposed algorithm. Experimental results obtained on these brain networks demonstrate that UPSO can find community modules efficiently and outperforms the other competing methods in terms of modularity and conductance. Additionally, the comparison of UPSO and PSO also shows that the uniform design plays an important role in improving the performance of UPSO.

2020 ◽  
Vol 15 (4) ◽  
pp. 287-299
Author(s):  
Jie Zhang ◽  
Junhong Feng ◽  
Fang-Xiang Wu

Background: : The brain networks can provide us an effective way to analyze brain function and brain disease detection. In brain networks, there exist some import neural unit modules, which contain meaningful biological insights. Objective:: Therefore, we need to find the optimal neural unit modules effectively and efficiently. Method:: In this study, we propose a novel algorithm to find community modules of brain networks by combining Neighbor Index and Discrete Particle Swarm Optimization (DPSO) with dynamic crossover, abbreviated as NIDPSO. The differences between this study and the existing ones lie in that NIDPSO is proposed first to find community modules of brain networks, and dose not need to predefine and preestimate the number of communities in advance. Results: : We generate a neighbor index table to alleviate and eliminate ineffective searches and design a novel coding by which we can determine the community without computing the distances amongst vertices in brain networks. Furthermore, dynamic crossover and mutation operators are designed to modify NIDPSO so as to alleviate the drawback of premature convergence in DPSO. Conclusion: The numerical results performing on several resting-state functional MRI brain networks demonstrate that NIDPSO outperforms or is comparable with other competing methods in terms of modularity, coverage and conductance metrics.


2013 ◽  
Vol 15 (3) ◽  
pp. 381-386 ◽  

Progress in the understanding of normal and disturbed brain function is critically dependent on the methodological approach that is applied. Both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are extremely efficient methods for the assessment of human brain function. The specific appeal of the combination is related to the fact that both methods are complementary in terms of basic aspects: EEG is a direct measurement of neural mass activity and provides high temporal resolution. FMRI is an indirect measurement of neural activity and based on hemodynamic changes, and offers high spatial resolution. Both methods are very sensitive to changes of synaptic activity, suggesting that with simultaneous EEG and fMRI the same neural events can be characterized with both high temporal and spatial resolution. Since neural oscillations that can be assessed with EEG are a key mechanism for multi-site communication in the brain, EEG-fMRI can offer new insights into the connectivity mechanisms of brain networks.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 917 ◽  
Author(s):  
Soheil Keshmiri

Entropy is a powerful tool for quantification of the brain function and its information processing capacity. This is evident in its broad domain of applications that range from functional interactivity between the brain regions to quantification of the state of consciousness. A number of previous reviews summarized the use of entropic measures in neuroscience. However, these studies either focused on the overall use of nonlinear analytical methodologies for quantification of the brain activity or their contents pertained to a particular area of neuroscientific research. The present study aims at complementing these previous reviews in two ways. First, by covering the literature that specifically makes use of entropy for studying the brain function. Second, by highlighting the three fields of research in which the use of entropy has yielded highly promising results: the (altered) state of consciousness, the ageing brain, and the quantification of the brain networks’ information processing. In so doing, the present overview identifies that the use of entropic measures for the study of consciousness and its (altered) states led the field to substantially advance the previous findings. Moreover, it realizes that the use of these measures for the study of the ageing brain resulted in significant insights on various ways that the process of ageing may affect the dynamics and information processing capacity of the brain. It further reveals that their utilization for analysis of the brain regional interactivity formed a bridge between the previous two research areas, thereby providing further evidence in support of their results. It concludes by highlighting some potential considerations that may help future research to refine the use of entropic measures for the study of brain complexity and its function. The present study helps realize that (despite their seemingly differing lines of inquiry) the study of consciousness, the ageing brain, and the brain networks’ information processing are highly interrelated. Specifically, it identifies that the complexity, as quantified by entropy, is a fundamental property of conscious experience, which also plays a vital role in the brain’s capacity for adaptation and therefore whose loss by ageing constitutes a basis for diseases and disorders. Interestingly, these two perspectives neatly come together through the association of entropy and the brain capacity for information processing.


Author(s):  
Yu Tian ◽  
Ling Wu ◽  
Le Yuan ◽  
Shaozhen Ding ◽  
Fu Chen ◽  
...  

Abstract Summary The biosynthetic ability of living organisms has important applications in producing bulk chemicals, biofuels and natural products. Based on the most comprehensive biosynthesis knowledgebase, a computational system, BCSExplorer, is proposed to discover the unexplored chemical space using nature’s biosynthetic potential. BCSExplorer first integrates the most comprehensive biosynthetic reaction database with 280 000 biochemical reactions and 60 000 chemicals biosynthesized globally over the past 130 years. Second, in this study, a biosynthesis tree is computed for a starting chemical molecule based on a comprehensive biotransformation rule library covering almost all biosynthetic possibilities, in which redundant rules are removed using a new algorithm. Moreover, biosynthesis feasibility, drug-likeness and toxicity analysis of a new generation of compounds will be pursued in further studies to meet various needs. BCSExplorer represents a novel method to explore biosynthetically available chemical space. Availability and implementation BCSExplorer is available at: http://www.rxnfinder.org/bcsexplorer/. Supplementary information Supplementary data are available at Bioinformatics online.


2017 ◽  
Author(s):  
Kendrick N. Kay ◽  
Kevin S. Weiner

AbstractThe goal of cognitive neuroscience is to understand how mental operations are performed by the brain. Given the complexity of the brain, this is a challenging endeavor that requires the development of formal models. Here, we provide a perspective on models of neural information processing in cognitive neuroscience. We define what these models are, explain why they are useful, and specify criteria for evaluating models. We also highlight the difference between functional and mechanistic models, and call attention to the value that neuroanatomy has for understanding brain function. Based on the principles we propose, we proceed to evaluate the merit of recently touted deep neural network models. We contend that these models are promising, but substantial work is necessary to (i) clarify what type of explanation these models provide, (ii) determine what specific effects they accurately explain, and (iii) improve our understanding of how they work.


2021 ◽  
Vol 11 (3) ◽  
pp. 293
Author(s):  
Yong-Gi Hong ◽  
Hang-Keun Kim ◽  
Young-Don Son ◽  
Chang-Ki Kang

This study was to investigate the changes in brain function due to lack of oxygen (O2) caused by mouth breathing, and to suggest a method to alleviate the side effects of mouth breathing on brain function through an additional O2 supply. For this purpose, we classified the breathing patterns according to EEG signals using a machine learning technique and proposed a method to reduce the side effects of mouth breathing on brain function. Twenty subjects participated in this study, and each subject performed three different breathings: nose and mouth breathing and mouth breathing with O2 supply during a working memory task. The results showed that nose breathing guarantees normal O2 supply to the brain, but mouth breathing interrupts the O2 supply to the brain. Therefore, this comparative study of EEG signals using machine learning showed that one of the most important elements distinguishing the effects of mouth and nose breathing on brain function was the difference in O2 supply. These findings have important implications for the workplace environment, suggesting that special care is required for employees who work long hours in confined spaces such as public transport, and that a sufficient O2 supply is needed in the workplace for working efficiency.


2011 ◽  
Vol 21 (1) ◽  
pp. 5-14
Author(s):  
Christy L. Ludlow

The premise of this article is that increased understanding of the brain bases for normal speech and voice behavior will provide a sound foundation for developing therapeutic approaches to establish or re-establish these functions. The neural substrates involved in speech/voice behaviors, the types of muscle patterning for speech and voice, the brain networks involved and their regulation, and how they can be externally modulated for improving function will be addressed.


GeroPsych ◽  
2012 ◽  
Vol 25 (4) ◽  
pp. 235-245 ◽  
Author(s):  
Katja Franke ◽  
Christian Gaser

We recently proposed a novel method that aggregates the multidimensional aging pattern across the brain to a single value. This method proved to provide stable and reliable estimates of brain aging – even across different scanners. While investigating longitudinal changes in BrainAGE in about 400 elderly subjects, we discovered that patients with Alzheimer’s disease and subjects who had converted to AD within 3 years showed accelerated brain atrophy by +6 years at baseline. An additional increase in BrainAGE accumulated to a score of about +9 years during follow-up. Accelerated brain aging was related to prospective cognitive decline and disease severity. In conclusion, the BrainAGE framework indicates discrepancies in brain aging and could thus serve as an indicator for cognitive functioning in the future.


Author(s):  
Preecha Yupapin ◽  
Amiri I. S. ◽  
Ali J. ◽  
Ponsuwancharoen N. ◽  
Youplao P.

The sequence of the human brain can be configured by the originated strongly coupling fields to a pair of the ionic substances(bio-cells) within the microtubules. From which the dipole oscillation begins and transports by the strong trapped force, which is known as a tweezer. The tweezers are the trapped polaritons, which are the electrical charges with information. They will be collected on the brain surface and transport via the liquid core guide wave, which is the mixture of blood content and water. The oscillation frequency is called the Rabi frequency, is formed by the two-level atom system. Our aim will manipulate the Rabi oscillation by an on-chip device, where the quantum outputs may help to form the realistic human brain function for humanoid robotic applications.


Sign in / Sign up

Export Citation Format

Share Document