rabi oscillation
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 21)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Mingzhu Weng ◽  
Zhihai Wang

Abstract In this paper, we investigate the energy spectrum and coherent dynamical process in a cavity-QED setup with a moving emitter, which is subject to a harmonic potential. We find that the vibration of the emitter will induce the effective Kerr and optomechanical interactions. With the assistance of Bogliubov operators approach, we obtain the energy spectrum of the system exactly. Furthermore, we show that the dynamics of the system exhibit a two-frequency Rabi oscillation behavior. We explain such behavior by optomechanical interaction induced quantum transition between emitter-cavity dressed states. We hope that the interaction between cavity mode and moving emitter will provide a versatile platform to explore more exotic effects and potential applications in cavity-QED scenario.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2486
Author(s):  
Rui-Zi Hu ◽  
Rong-Long Ma ◽  
Ming Ni ◽  
Xin Zhang ◽  
Yuan Zhou ◽  
...  

In the last 20 years, silicon quantum dots have received considerable attention from academic and industrial communities for research on readout, manipulation, storage, near-neighbor and long-range coupling of spin qubits. In this paper, we introduce how to realize a single spin qubit from Si-MOS quantum dots. First, we introduce the structure of a typical Si-MOS quantum dot and the experimental setup. Then, we show the basic properties of the quantum dot, including charge stability diagram, orbital state, valley state, lever arm, electron temperature, tunneling rate and spin lifetime. After that, we introduce the two most commonly used methods for spin-to-charge conversion, i.e., Elzerman readout and Pauli spin blockade readout. Finally, we discuss the details of how to find the resonance frequency of spin qubits and show the result of coherent manipulation, i.e., Rabi oscillation. The above processes constitute an operation guide for helping the followers enter the field of spin qubits in Si-MOS quantum dots.


2021 ◽  
Vol 104 (3) ◽  
Author(s):  
Siqi Wang ◽  
Erik Lötstedt ◽  
Jincheng Cao ◽  
Yao Fu ◽  
Hongwei Zang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeson Chen ◽  
Oliver Y. Chen ◽  
Huan-Cheng Chang

AbstractDecoherence of Rabi oscillation in a two-level quantum system consists of two components, a simple exponential decay and a damped oscillation. In dense-ensemble spin systems like negatively charged nitrogen-vacancy (NV−) centers in diamond, fast quantum state decoherence often obscures clear observation of the Rabi nutation. On the other hand, the simple exponential decay (or baseline decay) of the oscillation in such spin systems can be readily detected but has not been thoroughly explored in the past. This study investigates in depth the baseline decay of dense spin ensembles in diamond under continuously driving microwave (MW). It is found that the baseline decay times of NV− spins decrease with the increasing MW field strength and the MW detuning dependence of the decay times shows a Lorentzian-like spectrum. The experimental findings are in good agreement with simulations based on the Bloch formalism for a simple two-level system in the low MW power region after taking into account the effect of inhomogeneous broadening. This combined investigation provides new insight into fundamental spin relaxation processes under continuous driving electromagnetic fields and paves ways to better understanding of this underexplored phenomena using single NV− centers, which have shown promising applications in quantum computing and quantum metrology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tom Struck ◽  
Javed Lindner ◽  
Arne Hollmann ◽  
Floyd Schauer ◽  
Andreas Schmidbauer ◽  
...  

AbstractEstablishing low-error and fast detection methods for qubit readout is crucial for efficient quantum error correction. Here, we test neural networks to classify a collection of single-shot spin detection events, which are the readout signal of our qubit measurements. This readout signal contains a stochastic peak, for which a Bayesian inference filter including Gaussian noise is theoretically optimal. Hence, we benchmark our neural networks trained by various strategies versus this latter algorithm. Training of the network with 106 experimentally recorded single-shot readout traces does not improve the post-processing performance. A network trained by synthetically generated measurement traces performs similar in terms of the detection error and the post-processing speed compared to the Bayesian inference filter. This neural network turns out to be more robust to fluctuations in the signal offset, length and delay as well as in the signal-to-noise ratio. Notably, we find an increase of 7% in the visibility of the Rabi oscillation when we employ a network trained by synthetic readout traces combined with measured signal noise of our setup. Our contribution thus represents an example of the beneficial role which software and hardware implementation of neural networks may play in scalable spin qubit processor architectures.


2021 ◽  
Vol 104 (2) ◽  
Author(s):  
S. Nishimura ◽  
H. A. Torii ◽  
Y. Fukao ◽  
T. U. Ito ◽  
M. Iwasaki ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Deshui Yu ◽  
Frank Vollmer

AbstractParity-time (PT) symmetric lasers exploit the modulation of optical gain and loss and have led to important fundamental demonstrations in non-Hermitian physics. The current theoretical analysis of PT-symmetric laser physics is performed on the basis of the adiabatic elimination of the medium polarization. This approximation doesn’t hold true for a more general optical system with strong photon-particle interactions, where the Rabi oscillation of active particles plays a non-negligible role in the lasing action. Here, we propose a model that takes into account the internal dynamics of active particles and numerically investigate the PT symmetry of macroscopic- and microscopic-sized laser systems that operate in the strong-coupling regime. The distinct phase diagrams are drawn according to the features of intracavity photon numbers and emission spectra. Our work extends the PT-symmetric optics from the weak- to the strong-coupling limit, potentially paving the way towards nonclassical PT-symmetric light sources for integrated photonic networks and ultrasensitive sensors.


2021 ◽  
Vol 103 (3) ◽  
Author(s):  
Rikizo Ikuta ◽  
Toshiki Kobayashi ◽  
Tomohiro Yamazaki ◽  
Nobuyuki Imoto ◽  
Takashi Yamamoto
Keyword(s):  

2020 ◽  
pp. 2000098
Author(s):  
Kangkang Li ◽  
Sifan Li ◽  
Changbiao Li ◽  
Yin Cai ◽  
Feng Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document