scholarly journals On the Coupling of the Homotopy Perturbation Method and New Integral Transform for Solving Systems of Partial Differential Equations

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
E. E. Eladdad ◽  
E. A. Tarif

In the current work, a combination between a new integral transform and the homotopy perturbation method is presented. This combination allows to obtain analytic and numerical solutions for linear and nonlinear systems of partial differential equations.

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Hradyesh Kumar Mishra ◽  
Atulya K. Nagar

A new treatment for homotopy perturbation method is introduced. The new treatment is called He-Laplace method which is the coupling of the Laplace transform and the homotopy perturbation method using He’s polynomials. The nonlinear terms can be easily handled by the use of He’s polynomials. The method is implemented on linear and nonlinear partial differential equations. It is found that the proposed scheme provides the solution without any discretization or restrictive assumptions and avoids the round-off errors.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Shehu Maitama

A hybrid analytical method for solving linear and nonlinear fractional partial differential equations is presented. The proposed analytical approach is an elegant combination of the Natural Transform Method (NTM) and a well-known method, Homotopy Perturbation Method (HPM). In this analytical method, the fractional derivative is computed in Caputo sense and the nonlinear term is calculated using He’s polynomial. The proposed analytical method reduces the computational size and avoids round-off errors. Exact solution of linear and nonlinear fractional partial differential equations is successfully obtained using the analytical method.


Sign in / Sign up

Export Citation Format

Share Document