scholarly journals A New Two-Dimensional Mutual Coupled Logistic Map and Its Application for Pseudorandom Number Generator

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xuan Huang ◽  
Lingfeng Liu ◽  
Xiangjun Li ◽  
Minrong Yu ◽  
Zijie Wu

Given that the sequences generated by logistic map are unsecure with a number of weaknesses, including its relatively small key space, uneven distribution, and vulnerability to attack by phase space reconstruction, this paper proposes a new two-dimensional mutual coupled logistic map, which can overcome these weaknesses. Our two-dimensional chaotic map model is simpler than the recently proposed three-dimensional coupled logistic map, whereas the sequence generated by our system is more complex. Furthermore, a new kind of pseudorandom number generator (PRNG) based on the mutual coupled logistic maps is proposed for application. Both statistical tests and security analysis show that our proposed PRNG has good randomness and that it can resist all kinds of attacks. The algorithm speed analysis indicates that PRNG is valuable to practical applications.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
John Prakash Arockiasamy ◽  
Lydia Elizabeth Benjamin ◽  
Rhymend Uthariaraj Vaidyanathan

The design of cryptographically secure pseudorandom number generator (CSPRNG) producing unpredictable pseudorandom sequences robustly and credibly has been a nontrivial task. Almost all the chaos-based CSPRNG design approaches invariably depend only on statistical analysis. Such schemes designed to be secure are being proven to be predictable and insecure day by day. This paper proposes a design and instantiation approach to chaos-based CSPRNG using proven generic constructions of modern cryptography. The proposed design approach with proper instantiation of such generic constructions eventually results in providing best of both worlds that is the provable security guarantees of modern cryptography and passing of necessary statistical tests as that of chaos-based schemes. Also, we introduce a new coupled map lattice based on logistic-sine map for the construction of CSPRNG. The proposed pseudorandom number generator is proven using rigorous security analysis as that of modern cryptography and tested using the standard statistical testing suites. It is observed that the generated sequences pass all stringent statistical tests such as NIST, Dieharder, ENT, and TestU01 randomness test suites.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Guodong Ye ◽  
Kaixin Jiao ◽  
Chen Pan ◽  
Xiaoling Huang

In this paper, an effective framework for chaotic encryption based on a three-dimensional logistic map is presented together with secure hash algorithm-3 (SHA-3) and electrocardiograph (ECG) signal. Following the analysis of the drawbacks, namely, fixed key and low sensitivity, of some current algorithms, this work tries to solve these two problems and includes two contributions: (1) removal of the phenomenon of summation invariance in a plain-image, for which SHA-3 is proposed to calculate the hash value for the plain-image, with the results being employed to influence the initial keys for chaotic map; (2) resolution of the problem of fixed key by using an ECG signal, that can be different for different subjects or different for same subject at different times. The Wolf algorithm is employed to produce all the control parameters and initial keys in the proposed encryption method. It is believed that combining with the classical architecture of permutation-diffusion, the summation invariance in the plain-image and shortcoming of a fixed key will be avoided in our algorithm. Furthermore, the experimental results and security analysis show that the proposed encryption algorithm can achieve confidentiality.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hongyan Zang ◽  
Yue Yuan ◽  
Xinyuan Wei

This paper proposes three types of one-dimensional piecewise chaotic maps and two types of symmetrical piecewise chaotic maps and presents five theorems. Furthermore, some examples that satisfy the theorems are constructed, and an analysis and model of the dynamic properties are discussed. The construction methods proposed in this paper have a certain generality and provide a theoretical basis for constructing a new discrete chaotic system. In addition, this paper designs a pseudorandom number generator based on piecewise chaotic map and studies its application in cryptography. Performance evaluation shows that the generator can generate high quality random sequences efficiently.


2017 ◽  
Vol 27 (12) ◽  
pp. 1750184 ◽  
Author(s):  
Kenichiro Cho ◽  
Takaya Miyano

We have recently developed a chaos-based stream cipher based on augmented Lorenz equations as a star network of Lorenz subsystems. In our method, the augmented Lorenz equations are used as a pseudorandom number generator. In this study, we propose a new method based on the augmented Lorenz equations for generating binary pseudorandom numbers and evaluate its security using the statistical tests of SP800-22 published by the National Institute for Standards and Technology in comparison with the performances of other chaotic dynamical models used as binary pseudorandom number generators. We further propose a faster version of the proposed method and evaluate its security using the statistical tests of TestU01 published by L’Ecuyer and Simard.


2016 ◽  
Vol 87 (1) ◽  
pp. 407-425 ◽  
Author(s):  
M. A. Murillo-Escobar ◽  
C. Cruz-Hernández ◽  
L. Cardoza-Avendaño ◽  
R. Méndez-Ramírez

Sign in / Sign up

Export Citation Format

Share Document