scholarly journals A Fast Algorithm for Electromagnetic Scattering from One-Dimensional Rough Surface

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Jing Jing Wang ◽  
An Qi Wang ◽  
Zhi Xiang Huang ◽  
Tie Zhen Jiang

In this paper, the Adaptive Modified Characteristic Basis Function Method (AMCBFM) is proposed for quickly simulating electromagnetic scattering from a one-dimensional perfectly electric conductor (PEC) rough surface. Similar to the traditional characteristic basis function method (CBFM), Foldy-Lax multiple scattering equations are applied in order to construct the characteristic basis functions (CBFs). However, the CBFs of the AMCBFM are different from those of the CBFM. In the AMCBFM, the coefficients of the CBFs are first defined. Then, the coefficients and the CBFs are used to structure the total current, which is used to represent the induced current along the rough surface. Moreover, a current criterion is defined to adaptively halt the order of the CBFs. The validity and efficiency of the AMCBFM are assessed by comparing the numerical results of the AMCBFM with the method of moments (MoM). The AMCBFM can effectively reduce the size of the matrix, and it costs less than half the CPU time used by the MoM. Moreover, by comparing it with the traditional CBFM, the AMCBFM can guarantee the accuracy, reduce the number of iterations, and achieve better convergence performance than the CBFM does. The second order of the CBFs is set in the CBFM. Additionally, the first order of the CBFs of the AMCBFM alone is sufficient for this result.

Author(s):  
Zhong-Gen Wang ◽  
Jun-Wen Mu ◽  
Wen-Yan Nie

In this paper, a merged ultra-wideband characteristic basis function method (MUCBFM) is presented for high-precision analysis of wideband scattering problems. Unlike existing singular value decomposition (SVD) enhanced improved ultra-wideband characteristic basis function method (SVD-IUCBFM), the MUCBFM reduces the number of characteristic basis functions (CBFs) necessary to express a current distribution. This reduction is achieved by combining primary CBFs (PCBFs) with the secondary level CBFs (SCBFs) to form a single merged ultra-wideband characteristic basis function (MUCBF). As the MUCBF incorporates the effects of PCBFs and SCBFs, the accuracy does not change significantly compared to that obtained by the SVD-IUCBFM. Furthermore, the efficiencies of constructing the CBFs and filling the reduced matrix are improved. Numerical examples verify and demonstrate that the proposed method is credible both in terms of accuracy and efficiency.


Author(s):  
K. Harish Kumar ◽  
V. Antony Vijesh

Radial basis function (RBF) has been found useful for solving coupled sine-Gordon equation with initial and boundary conditions. Though this approach produces moderate accuracy in a larger domain, it requires more grid points. In the present study, we develop an alternative numerical scheme for solving one-dimensional coupled sine-Gordon equation to improve accuracy and to reduce grid points. To achieve these objectives, we make use of a wavelet scheme and solve coupled sine-Gordon equation. Based on the numerical results from the wavelet-based scheme, we conclude that our proposed method is more efficient than the radial basic function method in terms of accuracy.


2009 ◽  
Vol 51 (12) ◽  
pp. 2963-2969 ◽  
Author(s):  
Jaime Laviada ◽  
Marcos R. Pino ◽  
Raj Mittra ◽  
Fernando Las-Heras

Sign in / Sign up

Export Citation Format

Share Document