scholarly journals Effect of Chronic Consumption of Sweeteners on Microbiota and Immunity in the Small Intestine of Young Mice

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
B. E. Martínez-Carrillo ◽  
C. A. Rosales-Gómez ◽  
N. Ramírez-Durán ◽  
A. A. Reséndiz-Albor ◽  
J. A. Escoto-Herrera ◽  
...  

The consumption of sweeteners has increased as a measure to reduce the consumption of calories and thus combat obesity and diabetes. Sweeteners are found in a large number of products, so chronic consumption has been little explored. The objective of the study was to evaluate the effect of chronic sweetener consumption on the microbiota and immunity of the small intestine in young mice. We used 72 CD1 mice of 21 days old, divided into 3 groups: (i) No treatment, (ii) Group A (6 weeks of treatment), and (iii) Group B (12 weeks of treatment). Groups A and B were divided into 4 subgroups: Control (CL), Sucrose (Suc), Splenda® (Spl), and Svetia® (Sv). The following were determined: anthropometric parameters, percentage of lymphocytes of Peyer’s patches and lamina propria, IL-6, IL-17, leptin, resistin, C-peptide, and TNF-α. From feces, the microbiota of the small intestine was identified. The BMI was not modified; the mice preferred the consumption of Splenda® and Svetia®. The percentage of CD3+ lymphocytes in Peyer’s patches was increased. In the lamina propria, Svetia® increased the percentage of CD3+ lymphocytes, but Splenda® decreases it. The Splenda® and Svetia® subgroups elevate leptin, C-peptide, IL-6, and IL-17, with reduction of resistin. The predominant genus in all groups was Bacillus. The chronic consumption of sweeteners increases the population of lymphocytes in the mucosa of the small intestine. Maybe, Bacillus have the ability to adapt to sweeteners regardless of the origin or nutritional contribution of the same.

2015 ◽  
Vol 6 ◽  
Author(s):  
Salas Pimentel Marisol ◽  
Reséndiz Albor Aldo ◽  
Arciniega Martínez Ivonne ◽  
Martínez Becerril Elia ◽  
García Fonseca Alan ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. e0163607 ◽  
Author(s):  
Masatoshi Morikawa ◽  
Satoshi Tsujibe ◽  
Junko Kiyoshima-Shibata ◽  
Yohei Watanabe ◽  
Noriko Kato-Nagaoka ◽  
...  

2015 ◽  
Vol 49 ◽  
pp. e34
Author(s):  
A. Resendiz Albor ◽  
M. Salas-Pimentel ◽  
I. Arciniega-Martinez ◽  
A. García-Fonseca ◽  
E. Martinez-Becerril ◽  
...  

2020 ◽  
pp. 153537022097301
Author(s):  
Charles L Phillips ◽  
Bradley A Welch ◽  
Michael R Garrett ◽  
Bernadette E Grayson

Peyer’s patches are gut-associated lymphoid tissue located throughout the intestinal wall. Peyer’s patches consist of highly organized ovoid-shaped follicles, classified as non-encapsulated lymphatic tissues, populated with B cells, T cells, macrophages, and dendritic cells and function as an organism’s intestinal surveillance. Limited work compares the gene profiles of Peyer’s patches derived from different intestinal regions. In the current study, we first performed whole transcriptome analysis using RNAseq to compare duodenal and ileal Peyer’s patches obtained from the small intestine of Long Evans rats. Of the 12,300 genes that were highly expressed, 18.5% were significantly different between the duodenum and ileum. Using samples obtained from additional subjects ( n = 10), we validated the novel gene expression patterns in Peyer’s patches obtained from the three regions of the small intestine. Rats had a significantly reduced number of Peyer’s patches in the duodenum in comparison to either the jejunum or ileum. Regional differences in structural, metabolic, and immune-related genes were validated. Genes such as alcohol dehydrogenase 1, gap junction protein beta 2, and serine peptidase inhibitor clade b, member 1a were significantly reduced in the ileum in comparison to other regions. On the other hand, genes such as complement C3d receptor type, lymphocyte cytosolic protein 1, and lysozyme C2 precursor were significantly lower in the duodenum. In summary, the gene expression pattern of Peyer’s patches is influenced by intestinal location and may contribute to its role in that segment.


2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S172-S172
Author(s):  
A Carrasco Garcia ◽  
A Rao ◽  
E Kokkinou ◽  
S Haapaniemi ◽  
U Lindforss ◽  
...  

Abstract Background The human gut mucosal immune system is compartmentalised in distinct and specialised immune niches. The epithelium and the lamina propria have been proposed as effector sites, while gut-associated lymphoid tissues (GALTs) constitute inductive immune niches. The major mucosal GALTs are the Peyer’s patches in the ileum and the colonic isolated lymphoid follicles (ILFs), scattered in the submucosa of the colon. The majority of studies of human gut immune function in health and disease have analysed unfractionated mucosal tissue samples. Hence, in contrast to mice, little is known about compartmentalised immune cell specialisation in the human gut. The aim of this study was to use novel dissection methods to analyse separate human gut immune niches. Methods Macroscopically healthy margins from colorectal cancer colectomies were obtained at a minimum distance of 10 cm from the tumour border. After faeces, mucus, fat and muscle removal, Peyer’s patches were identified and dissected using a stereomicroscope (based on Keita et al., Lab Invest, 2006). Colonic mucosa and submucosa (containing ILFs) fractions were mechanically separated by forceps (based on the method developed by Fenton et al., Immunity, under revision). Isolation of epithelial and lamina propria fractions from the mucosal compartment was performed by calcium chelation (DTT and EDTA) and enzymatic digestion (Collagenase II and DNAse), respectively. Cell suspensions from each fraction were analysed by flow cytometry (BD LSR-Fortessa and BD FACSymphony). Results As expected, mucosal GALTs were characterised by an enrichment of germinal centre B cells (CD19+CD20+CD38+), lymphoid tissue-like innate lymphoid cells (Lin−CD127+CD117+Nrp1+) and a higher CD4+/CD8+ T-cell ratio vs. mucosa, whereas the mucosal fraction was enriched for plasma cells (CD19+CD20−CD38high) and distinguished by a decreased CD4+/CD8+ T-cell ratio as compared with the GALT in both ileum and colon. CD19+/CD3+ ratios were only higher in Peyer’s patches but not in colonic submucosa enriched with ILFs, possibly due to the smaller size of the B-cell follicles in the latter. The intraepithelial compartment lacked B cells and contained more γδ-T cells as compared with the GALT and lamina propria. Conclusion We have used novel dissection methods in human intestinal tissues that reveal a compartmentalised immune cell specialisation that is in line with what has previously been described in mice. The method will allow for future deeper analysis of the human gut immune niches in health and disease, such as in inflammatory bowel disease.


1998 ◽  
Vol 115 (3) ◽  
pp. 618-627 ◽  
Author(s):  
Ryota Hokari ◽  
Soichiro Miura ◽  
Hitoshi Fujimori ◽  
Yoshikazu Tsuzuki ◽  
Takeharu Shigematsu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document