scholarly journals Reverse Immunology Approach to Define a New HIV-gp41-Neutralizing Epitope

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Karim Dorgham ◽  
Nicolas Pietrancosta ◽  
Amel Affoune ◽  
Olivier Lucar ◽  
Tahar Bouceba ◽  
...  

The design of immunogens susceptible to elicit potent and broadly neutralizing antibodies against the human immunodeficiency virus type 1 (HIV-1) remains a veritable challenge in the course of vaccine development. Viral envelope proteins adopt different conformational states during the entry process, allowing the presentation of transient neutralizing epitopes. We focused on the highly conserved 3S motif of gp41, which is exposed to the surface envelope in its trimeric prefusion state. Vaccination with a W614A-modified 3S peptide induces in animals neutralizing anti-HIV-1 antibodies among which we selected clone F8. We used F8 as bait to select for W614A-3S phage-peptide mimics. Binding and molecular docking studies revealed that F8 interacts similarly with W614A-3S and a Mim_F8-1 mimotope, despite their lack of sequence homology, suggesting structural mimicry. Finally, vaccination of mice with the purified Mim_F8-1 phage elicited HIV-1-neutralizing antibodies that bound to the cognate W614A-3S motif. Collectively, our findings provide new insights into the molecular design of immunogens to elicit antibodies with neutralizing properties.

2014 ◽  
Vol 21 (12) ◽  
pp. 1230-1239
Author(s):  
Yang Zang ◽  
Jinpeng Bi ◽  
Dongchuan Du ◽  
Xintao Liu ◽  
Yan Zhang ◽  
...  

Eliciting efficient broadly neutralizing antibodies (BnAbs) is an important goal that has yet to be achieved for human immunodeficiency type 1 (HIV-1) vaccine development, although they are rarely produced in virus-infected individuals. In particular, inducing specific neutralizing antibodies to the gp41 membrane proximal external region (MPER) has proven a difficult task. In this study, we introduce Norovirus P particles as a new platform to display the MPER epitope of HIV-1 as a vaccine with the aim of enhancing immune responses. The results showed that HIV-1 chimeric P particles were capable of inducing MPER-specific antibody responses in immunized guinea pigs, although only weakly neutralizing activity could be detected. These findings are consistent with other previous studies which have also focused on the well-studied 2F5 and 4E10 BnAbs. Our findings provide an alternate strategy for design of vaccines against HIV-1. However, great challenges remain in the effort to develop vaccines that can induce efficient HIV-1 neutralizing antibodies.


Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 76 ◽  
Author(s):  
Mitch Brinkkemper ◽  
Kwinten Sliepen

The enormous sequence diversity between human immunodeficiency virus type 1 (HIV-1) strains poses a major roadblock for generating a broadly protective vaccine. Many experimental HIV-1 vaccine efforts are therefore aimed at eliciting broadly neutralizing antibodies (bNAbs) that are capable of neutralizing the majority of circulating HIV-1 strains. The envelope glycoprotein (Env) trimer on the viral membrane is the sole target of bNAbs and the key component of vaccination approaches aimed at eliciting bNAbs. Multimeric presentation of Env on nanoparticles often plays a critical role in these strategies. Here, we will discuss the different aspects of nanoparticles in Env vaccination, including recent insights in immunological processes underlying their perceived advantages, the different nanoparticle platforms and the various immunogenicity studies that employed nanoparticles to improve (neutralizing) antibody responses against Env.


2019 ◽  
Vol 14 (1) ◽  
pp. 30-42 ◽  
Author(s):  
Qian Wang ◽  
Linqi Zhang

AbstractRemarkable progress has been achieved for prophylactic and therapeutic interventions against human immunodeficiency virus type I (HIV-1) through antiretroviral therapy. However, vaccine development has remained challenging. Recent discoveries in broadly neutralizing monoclonal antibodies (bNAbs) has led to the development of multiple novel vaccine approaches for inducing bNAbs-like antibody response. Structural and dynamic studies revealed several vulnerable sites and states of the HIV-1 envelop glycoprotein (Env) during infection. Our review aims to highlight these discoveries and rejuvenate our endeavor in HIV-1 vaccine design and development.


2014 ◽  
Vol 211 (12) ◽  
pp. 2361-2372 ◽  
Author(s):  
Florian Klein ◽  
Lilian Nogueira ◽  
Yoshiaki Nishimura ◽  
Ganesh Phad ◽  
Anthony P. West ◽  
...  

Antibody-mediated immunotherapy is effective in humanized mice when combinations of broadly neutralizing antibodies (bNAbs) are used that target nonoverlapping sites on the human immunodeficiency virus type 1 (HIV-1) envelope. In contrast, single bNAbs can control simian–human immunodeficiency virus (SHIV) infection in immune-competent macaques, suggesting that the host immune response might also contribute to the control of viremia. Here, we investigate how the autologous antibody response in intact hosts can contribute to the success of immunotherapy. We find that frequently arising antibodies that normally fail to control HIV-1 infection can synergize with passively administered bNAbs by preventing the emergence of bNAb viral escape variants.


2015 ◽  
Vol 89 (15) ◽  
pp. 7813-7828 ◽  
Author(s):  
Randi B. Gombos ◽  
Dror Kolodkin-Gal ◽  
Leila Eslamizar ◽  
Joshua O. Owuor ◽  
Emanuele Mazzola ◽  
...  

ABSTRACTTo date, most therapeutic and vaccine candidates for human immunodeficiency virus type 1 (HIV-1) are evaluated preclinically for efficacy against cell-free viral challenges. However, cell-associated HIV-1 is suggested to be a major contributor to sexual transmission by mucosal routes. To determine if neutralizing antibodies or inhibitors block cell-free and cell-associated virus transmission of diverse HIV-1 strains with different efficiencies, we tested 12 different antibodies and five inhibitors against four green fluorescent protein (GFP)-labeled HIV-1 envelope (Env) variants from transmitted/founder (T/F) or chronic infection isolates. We evaluated antibody/inhibitor-mediated virus neutralization using either TZM-bl target cells, in which infectivity was determined by virus-driven luciferase expression, or A3R5 lymphoblastoid target cells, in which infectivity was evaluated by GFP expression. In both the TZM-bl and A3R5 assays, cell-free virus or infected CD4+lymphocytes were used as targets for neutralization. We further hypothesized that the combined use of specific neutralizing antibodies targeting HIV-1 Env would more effectively prevent cell-associated virus transmission than the use of individual antibodies. The tested antibody combinations included two gp120-directed antibodies, VRC01 and PG9, or VRC01 with the gp41-directed antibody 10E8. Our results demonstrated that cell-associated virus was less sensitive to neutralizing antibodies and inhibitors, particularly using the A3R5 neutralization assay, and the potencies of these neutralizing agents differed among Env variants. A combination of different neutralizing antibodies that target specific sites on gp120 led to a significant reduction in cell-associated virus transmission. These assays will help identify ideal combinations of broadly neutralizing antibodies to use for passive preventive antibody administration and further characterize targets for the most effective neutralizing antibodies/inhibitors.IMPORTANCEPrevention of the transmission of human immunodeficiency virus type 1 (HIV-1) remains a prominent goal of HIV research. The relative contribution of HIV-1 within an infected cell versus cell-free HIV-1 to virus transmission remains debated. It has been suggested that cell-associated virus is more efficient at transmitting HIV-1 and more difficult to neutralize than cell-free virus. Several broadly neutralizing antibodies and retroviral inhibitors are currently being studied as potential therapies against HIV-1 transmission. The present study demonstrates a decrease in neutralizing antibody and inhibitor efficiencies against cell-associated compared to cell-free HIV-1 transmission among different strains of HIV-1. We also observed a significant reduction in virus transmission using a combination of two different neutralizing antibodies that target specific sites on the outermost region of HIV-1, the virus envelope. Therefore, our findings support the use of antibody combinations against both cell-free and cell-associated virus in future candidate therapy regimens.


2005 ◽  
Vol 79 (16) ◽  
pp. 10108-10125 ◽  
Author(s):  
Ming Li ◽  
Feng Gao ◽  
John R. Mascola ◽  
Leonidas Stamatatos ◽  
Victoria R. Polonis ◽  
...  

ABSTRACT Induction of broadly cross-reactive neutralizing antibodies is a high priority for AIDS vaccine development but one that has proven difficult to be achieved. While most immunogens generate antibodies that neutralize a subset of T-cell-line-adapted strains of human immunodeficiency virus type 1 (HIV-1), none so far have generated a potent, broadly cross-reactive response against primary isolates of the virus. Even small increments in immunogen improvement leading to increases in neutralizing antibody titers and cross-neutralizing activity would accelerate vaccine development; however, a lack of uniformity in target strains used by different investigators to assess cross-neutralization has made the comparison of vaccine-induced antibody responses difficult. Thus, there is an urgent need to establish standard panels of HIV-1 reference strains for wide distribution. To facilitate this, full-length gp160 genes were cloned from acute and early subtype B infections and characterized for use as reference reagents to assess neutralizing antibodies against clade B HIV-1. Individual gp160 clones were screened for infectivity as Env-pseudotyped viruses in a luciferase reporter gene assay in JC53-BL (TZM-bl) cells. Functional env clones were sequenced and their neutralization phenotypes characterized by using soluble CD4, monoclonal antibodies, and serum samples from infected individuals and noninfected recipients of a recombinant gp120 vaccine. Env clones from 12 R5 primary HIV-1 isolates were selected that were not unusually sensitive or resistant to neutralization and comprised a wide spectrum of genetic, antigenic, and geographic diversity. These reference reagents will facilitate proficiency testing and other validation efforts aimed at improving assay performance across laboratories and can be used for standardized assessments of vaccine-elicited neutralizing antibodies.


2007 ◽  
Vol 81 (16) ◽  
pp. 8533-8542 ◽  
Author(s):  
Esther D. Quakkelaar ◽  
Floris P. J. van Alphen ◽  
Brigitte D. M. Boeser-Nunnink ◽  
Ad C. van Nuenen ◽  
Ralph Pantophlet ◽  
...  

ABSTRACT The ability of the broadly neutralizing human immunodeficiency virus type 1 (HIV-1) specific human monoclonal antibodies (MAbs) b12, 2G12, 2F5, and 4E10 to neutralize recently transmitted viruses has not yet been explored in detail. We investigated the neutralization sensitivity of subtype B HIV-1 variants obtained from four primary HIV infection cases and six transmission couples (four homosexual and two parenteral) to these MAbs. Sexually transmitted HIV-1 variants isolated within the first 2 months after seroconversion were generally sensitive to 2F5, moderately resistant to 4E10 and b12, and initially resistant but later more sensitive to 2G12 neutralization. In the four homosexual transmission couples, MAb neutralization sensitivity of HIV in recipients did not correlate with the MAb neutralization sensitivity of HIV from their source partners, whereas the neutralization sensitivity of donor and recipient viruses involved in parenteral transmission was more similar. For a fraction (11%) of the HIV-1 variants analyzed here, neutralization by 2G12 could not be predicted by the presence of N-linked glycosylation sites previously described to be involved in 2G12 binding. Resistance to 2F5 and 4E10 neutralization did also not correlate with mutations in the respective core epitopes. Overall, we observed that the neutralization resistance of recently transmitted subtype B HIV-1 variants was relatively high. Although 8 of 10 patients had viruses that were sensitive to neutralization by at least one of the four broadly neutralizing antibodies studied, 4 of 10 patients harbored at least one virus variant that seemed resistant to all four antibodies. Our results suggest that vaccine antigens that only elicit antibodies equivalent to b12, 2G12, 2F5, and 4E10 may not be sufficient to protect against all contemporary HIV-1 variants and that additional cross-neutralizing specificities need to be sought.


2009 ◽  
Vol 83 (21) ◽  
pp. 10892-10907 ◽  
Author(s):  
Xueling Wu ◽  
Tongqing Zhou ◽  
Sijy O'Dell ◽  
Richard T. Wyatt ◽  
Peter D. Kwong ◽  
...  

ABSTRACT The region of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 that engages its primary cellular receptor CD4 forms a site of vulnerability to neutralizing antibodies. The monoclonal antibody b12 exploits the conservation and accessibility of the CD4-binding site to neutralize many, though not all, HIV-1 isolates. To understand the basis of viral resistance to b12, we used the atomic-level definition of b12-gp120 contact sites to study a panel of diverse circulating viruses. A combination of sequence analysis, computational modeling, and site-directed mutagenesis was used to determine the influence of amino acid variants on binding and neutralization by b12. We found that several substitutions within the dominant b12 contact surface, called the CD4-binding loop, mediated b12 resistance, and that these substitutions resided just proximal to the known CD4 contact surface. Hence, viruses varied in key b12 contact residues that are proximal to, but not part of, the CD4 contact surface. This explained how viral isolates were able to evade b12 neutralization while maintaining functional binding to CD4. In addition, some viruses were resistant to b12 despite minimal sequence variation at b12 contact sites. Such neutralization resistance usually could be reversed by alterations at residues thought to influence the quaternary configuration of the viral envelope spike. To design immunogens that elicit neutralizing antibodies directed to the CD4-binding site, researchers need to address the antigenic variation within this region of gp120 and the restricted access to the CD4-binding site imposed by the native configuration of the trimeric viral envelope spike.


2016 ◽  
Vol 90 (8) ◽  
pp. 4017-4031 ◽  
Author(s):  
Manxue Jia ◽  
Hong Lu ◽  
Martin Markowitz ◽  
Cecilia Cheng-Mayer ◽  
Xueling Wu

ABSTRACTTo improve our understanding of the similarities and differences between neutralizing antibodies elicited by simian-human immunodeficiency virus (SHIV)-infected rhesus macaques and human immunodeficiency virus type 1 (HIV-1)-infected humans, we examined the plasma of 13 viremic macaques infected with SHIVSF162P3Nand 85 HIV-1-infected humans with known times of infection. We identified 5 macaques (38%) from 1 to 2 years postinfection (p.i.) with broadly neutralizing antibodies (bnAbs) against tier 2 HIV-1. In comparison, only 2 out of 42 (5%) human plasma samples collected in a similar time frame of 1 to 3 years p.i. exhibited comparable neutralizing breadths and potencies, with the number increasing to 7 out of 21 (30%) after 3 years p.i. Plasma mapping with monomeric gp120 identified only 2 out of 9 humans and 2 out of 4 macaques that contained gp120-reactive neutralizing antibodies, indicating distinct specificities in these plasma samples, with most of them recognizing the envelope trimer (including gp41) rather than the gp120 monomer. Indeed, a total of 20 gp120-directed monoclonal antibodies (MAbs) isolated from a human subject (AD358) and a Chinese rhesus macaque (GB40) displayed no or limited neutralizing activity against tier 2 strains. These isolated MAbs, mapped to the CD4-binding site, the V3 loop, the inner domain, and the C5 region of gp120, revealed genetic similarity between the human and macaque immunoglobulin genes used to encode some V3-directed MAbs. These results also support the use of envelope trimer probes for efficient isolation of HIV-1 bnAbs.IMPORTANCEHIV-1 vaccine research can benefit from understanding the development of broadly neutralizing antibodies (bnAbs) in rhesus macaques, commonly used to assess vaccine immunogenicity and efficacy. Here, we examined 85 HIV-1-infected humans and 13 SHIVSF162P3N-infected macaques for bnAbs and found that, similar to HIV-1-infected humans, bnAbs in SHIV-infected macaques are also rare, but their development might have been faster in some of the studied macaques. Plasma mapping with monomeric gp120 indicated that most bnAbs bind to the envelope trimer rather than the gp120 monomer. In support of this, none of the isolated gp120-reactive monoclonal antibodies (MAbs) displayed the neutralization breadth observed in the corresponding plasma. However, the MAb sequences revealed similarity between human and macaque genes used to encode some V3-directed MAbs. Our study sheds light on the timing and development of bnAbs in SHIV-infected macaques in comparison to HIV-1-infected humans and highlights the use of envelope trimer probes for efficient recovery of bnAbs.


Sign in / Sign up

Export Citation Format

Share Document