scholarly journals Elastic Analysis for Rotating Functionally Graded Annular Disk with Exponentially-Varying Profile and Properties

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Wen-Feng Lin

Functionally graded materials have been widely used in engineering and human health applications. The issues about mechanical behavior of functionally graded material have received considerable attention. However, because of the complexity of material property, geometric profile, and mechanical load, there is still lack of proper analytic solutions about deformation and stress in many articles. The principal goal of this research is to study the effect of mechanical load on deformation and stress in rotating thin-walled functionally gradient material annular disk with exponentially-varying profile and properties. The inner and outer surfaces of annular disk are subjected to different pressures simultaneously. For this purpose, the infinitesimal theory of elasticity and axisymmetric plane stress assumptions has been proposed to formulate the governing equation. The governing equation is a generalized confluent hypergeometric differential equation, based on Whittaker’s functions; this is the first time that closed-form solutions of mechanical behaviors are revealed about proposed functionally gradient material model. Besides, another four boundary conditions are also discussed, i.e., the inner and outer surfaces of the annular disk are considered to be the combinations of free and clamped conditions. Numeric examples of two different functionally graded material properties are given to demonstrate displacement and stress solutions. Moreover, uniform disks made of homogeneous material under different boundary conditions are investigated, which are special cases of the proposed rotating functionally gradient material disks. Finally, some conclusions are made at the end of the present paper.

Author(s):  
Piyush Pratap Singh ◽  
Mohammad Sikandar Azam ◽  
Vinayak Ranjan

In the present research article, classical plate theory has been adopted to analyze functionally graded material plate, having out of plane material inhomogeneity, resting on Winkler–Pasternak foundation under different combinations of boundary conditions. The material properties of the functionally graded material plate vary according to power law in the thickness direction. Rayleigh–Ritz method in conjugation with polynomial displacement functions has been used to develop a computationally efficient mathematical model to study free vibration characteristics of the plate. Convergence of frequency parameters (nondimensional natural frequencies) has been attained by increasing the number of polynomials of displacement function. The frequency parameters of the functionally graded material plate obtained by proposed method are compared with the open literature to validate the present model. Firstly, the present model is used to calculate first six natural frequencies of the functionally graded plate under all possible combinations of boundary conditions for the constant value of stiffness of Winkler and Pasternak foundation moduli. Further, the effects of density, aspect ratio, power law exponent, Young’s modulus on frequency parameters of the functionally graded plate resting on Winkler–Pasternak foundation under specific boundary conditions viz. CCCC (all edges clamped), SSSS (all edges simply supported), CFFF (cantilever), SCSF (simply supported-clamped-free) are studied extensively. Furthermore, effect of stiffness of elastic foundation moduli (kp and kw) on frequency parameters are analyzed. It has been observed that effects of aspect ratios, boundary conditions, Young’s modulus and density on frequency parameters are significant at lower value of the power law exponent. It has also been noted from present investigation that Pasternak foundation modulus has greater effect on frequency parameters as compared to the Winkler foundation modulus. Most of the results presented in this paper are novel and may be used for the validation purpose by researchers. Three dimensional mode shapes for the functionally graded plate resting on elastic foundation have also been presented in this article.


Author(s):  
MOHAMMAD TALHA ◽  
B. N. SINGH

Nonlinear mechanical bending of functionally graded material (FGM) plates under transverse loads with various boundary conditions are presented. The material properties of the FGM plates are graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The theoretical nonlinear finite element formulations are based on the higher-order shear deformation theory, with a special modification in the transverse displacement in order to estimate the parabolic distribution of transverse shear strains through the plate thickness. The Green–Lagrange nonlinear strain–displacement relation with all higher-order nonlinear strain terms is included to account for the large deflection response of the plate. The fundamental equations for FGM plates with traction-free boundary conditions on the top and bottom faces of the plate are accomplished using variational approach. Results have been achieved using a C0 continuous isoparametric Lagrangian finite element with 13 degrees of freedom per node. Convergence and comparison studies have been performed to ascertain the effectiveness of the present model. Numerical results are highlighted for different thickness ratios, aspect ratios, and role played by the constituent volume fraction index with different boundary conditions.


2014 ◽  
Vol 627 ◽  
pp. 57-60 ◽  
Author(s):  
Wasim M.K. Helal ◽  
Dong Yan Shi

Functionally graded materials (FGMs) have become helpful in our engineering applications. Analysis of functionally graded material (FGM) plate during debonding case with different boundary conditions is the main purpose of this investigation. Elastic modulus (E) of functionally graded (FG) plate is assumed to vary continuously throughout the height of the plate, according the volume fraction of the constituent materials based on a modified sigmoid function, but the value of Poisson coefficient is constant. In this research, the finite element method (FEM) is used in order to show the shape of a plate made of FGM during debonding case with different boundary conditions. In the present investigation, the displacement value applied to the FGM plate is changed in order to find the relationship between the maximum von Mises stress and the displacement. Also, the relationship between the maximum shear stress and the displacement is carried out in the present work. The material gradient indexes of the FGM plate are changed from 1 to 10. The stress distributions around the debonding zone with all the material gradient indexes of the FGM plate are investigated in this work.


2019 ◽  
Vol 23 (1) ◽  
pp. 125-136 ◽  
Author(s):  
Sanjeev Sharma ◽  
Sanehlata Yadav

Thermal elastic-plastic stresses and strains have been obtained for rotating annular disk by using finite difference method with Von-Mises? yield criterion and non-linear strain hardening measure. The compressibility of the disk is assumed to be varying in the radial direction. From the numerical results, we can conclude that thermal rotating disk made of functionally graded material whose thickness decreases exponentially and density increases exponentially with non-linear strain hardening measure (m = 0.2) is on the safe side of the design as compared to disk made of homogenous material. This is because of the reason that circumferential stress is less for functionally graded disk as compared to homogenous disk. Also, plastic strains are high for functionally graded disk as compared to homogenous disk. It means that disk made of functionally graded material reduces the possibility of fracture at the bore as compared to the disk made of homogeneous material which leads to the idea of stress saving.


2019 ◽  
Vol 969 ◽  
pp. 116-121
Author(s):  
Ch. Naveen Reddy ◽  
M. Bhargav ◽  
T. Revanth

This work investigates the complete analytical solution for functionally graded material (FGM) plates incorporated with smart material. The odjective of the present work is to determine bending characteristics of piezoelectric FGM plates with different geometrical parameters, voltages and boundary conditions for electro-mechanical loading. In this work an analytical formulation based on higher order shear deformation theory (HSDT) is presented for the piezoelectric FGM plates. The solutions are obtained in closed from using Navier’s technique for piezoelectric FGM plates a specific type of simply supported boundary conditions and pc code have been developed to find out the deflections and stresses for various parameters. All the solutions are plotted against aspect proportion, side to thickness proportion as a function of material variety parameter (n) and thickness coordinate for different voltages. The significant trends from the results are obtained.


Author(s):  
A Asanjarani ◽  
S Satouri ◽  
A Alizadeh ◽  
MH Kargarnovin

Based on the first-order shear deformation theory, this paper focuses on the free vibration behavior of two-dimensional functionally graded material truncated conical shells resting on Winkler–Pasternak foundations. The materials are assumed to be isotropic and inhomogeneous in the length and thickness directions of truncated conical shell. The material properties of the truncated conical shell are varied in these directions according to power law functions. The derived governing equations are solved using differential quadrature method. Convergence of this method is checked and the fast rate of convergence is observed. The primary results of this study are obtained for ( SS− SL), ( CS− CL), and ( CS− SL) boundary conditions and compared with those available in the literatures. Furthermore, effects of geometrical parameters, material power indexes, mechanical boundary conditions, Winkler and Pasternak foundation moduli on the nondimensional frequency parameters of the two-dimensional functionally graded material truncated conical shell are studied.


2019 ◽  
Vol 39 (4) ◽  
pp. 1002-1023
Author(s):  
Xu Liang ◽  
Yu Deng ◽  
Xue Jiang ◽  
Zeng Cao ◽  
Yongdu Ruan ◽  
...  

In this paper, a 3D semi-analytical method is proposed by introducing the Durbin’s Laplace transform, as well as its numerical inversion method, state space approach and differential quadrature method to analyse the transient behaviour of functionally graded material cylindrical panels. Moreover, to investigate the effectiveness of the proposed semi-analytical solution, four boundary conditions are used to undertake the analyses. Comparing the proposed approach with other theoretical methods from the literatures, we see better agreements in the natural frequencies. Besides, the semi-analytical solution acquires nearly the same transient response as those obtained by ANSYS. Convergence studies indicate that the proposed method has a quick convergence rate with growing sample point numbers along the length direction, so do layer numbers increase along the radial direction. The effects of thickness/outer radius ratio, length/outer radius ratio and functionally graded indexes are also studied. When carbon nanotube is added to functionally graded material cylindrical panel, the composite structures have been reinforced greatly. The proposed 3D semi-analytical method has high accuracy for the analysis of composite structures. This study can serve as a foundation for solving more complicated environments such as fluid–structure interaction of flexible pipe or thermal effect analysis of functionally graded material in aerospace field.


Sign in / Sign up

Export Citation Format

Share Document