scholarly journals Deep RetinaNet for Dynamic Left Ventricle Detection in Multiview Echocardiography Classification

2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Meijun Yang ◽  
Xiaoyan Xiao ◽  
Zhi Liu ◽  
Longkun Sun ◽  
Wei Guo ◽  
...  

Background. Currently, echocardiography has become an essential technology for the diagnosis of cardiovascular diseases. Accurate classification of apical two-chamber (A2C), apical three-chamber (A3C), and apical four-chamber (A4C) views and the precise detection of the left ventricle can significantly reduce the workload of clinicians and improve the reproducibility of left ventricle segmentation. In addition, left ventricle detection is significant for the three-dimensional reconstruction of the heart chambers. Method. RetinaNet is a one-stage object detection algorithm that can achieve high accuracy and efficiency at the same time. RetinaNet is mainly composed of the residual network (ResNet), the feature pyramid network (FPN), and two fully convolutional networks (FCNs); one FCN is for the classification task, and the other is for the border regression task. Results. In this paper, we use the classification subnetwork to classify A2C, A3C, and A4C images and use the regression subnetworks to detect the left ventricle simultaneously. We display not only the position of the left ventricle on the test image but also the view category on the image, which will facilitate the diagnosis. We used the mean intersection-over-union (mIOU) as an index to measure the performance of left ventricle detection and the accuracy as an index to measure the effect of the classification of the three different views. Our study shows that both classification and detection effects are noteworthy. The classification accuracy rates of A2C, A3C, and A4C are 1.000, 0.935, and 0.989, respectively. The mIOU values of A2C, A3C, and A4C are 0.858, 0.794, and 0.838, respectively.

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Suyu Dong ◽  
Gongning Luo ◽  
Kuanquan Wang ◽  
Shaodong Cao ◽  
Qince Li ◽  
...  

Segmentation of the left ventricle (LV) from three-dimensional echocardiography (3DE) plays a key role in the clinical diagnosis of the LV function. In this work, we proposed a new automatic method for the segmentation of LV, based on the fully convolutional networks (FCN) and deformable model. This method implemented a coarse-to-fine framework. Firstly, a new deep fusion network based on feature fusion and transfer learning, combining the residual modules, was proposed to achieve coarse segmentation of LV on 3DE. Secondly, we proposed a method of geometrical model initialization for a deformable model based on the results of coarse segmentation. Thirdly, the deformable model was implemented to further optimize the segmentation results with a regularization item to avoid the leakage between left atria and left ventricle to achieve the goal of fine segmentation of LV. Numerical experiments have demonstrated that the proposed method outperforms the state-of-the-art methods on the challenging CETUS benchmark in the segmentation accuracy and has a potential for practical applications.


Author(s):  
K. Zhou ◽  
Y. Chen ◽  
I. Smal ◽  
R. Lindenbergh

<p><strong>Abstract.</strong> Up-to-date 3D building models are important for many applications. Airborne very high resolution (VHR) images often acquired annually give an opportunity to create an up-to-date 3D model. Building segmentation is often the first and utmost step. Convolutional neural networks (CNNs) draw lots of attention in interpreting VHR images as they can learn very effective features for very complex scenes. This paper employs Mask R-CNN to address two problems in building segmentation: detecting different scales of building and segmenting buildings to have accurately segmented edges. Mask R-CNN starts from feature pyramid network (FPN) to create different scales of semantically rich features. FPN is integrated with region proposal network (RPN) to generate objects with various scales with the corresponding optimal scale of features. The features with high and low levels of information are further used for better object classification of small objects and for mask prediction of edges. The method is tested on ISPRS benchmark dataset by comparing results with the fully convolutional networks (FCN), which merge high and low level features by a skip-layer to create a single feature for semantic segmentation. The results show that Mask R-CNN outperforms FCN with around 15% in detecting objects, especially in detecting small objects. Moreover, Mask R-CNN has much better results in edge region than FCN. The results also show that choosing the range of anchor scales in Mask R-CNN is a critical factor in segmenting different scale of objects. This paper provides an insight into how a good anchor scale for different dataset should be chosen.</p>


Author(s):  
Yaohui Hu ◽  
Ke Zhang ◽  
Chao Xing

In order to solve the problem of small and dim ship target detection under complex sea-sky background, we propose a target detection algorithm based on sea-sky line detection. Firstly, the paper locates the sea-sky-line based on fully convolutional networks, through which target potential area can be determined and disturbance can be excluded. Then the method based on the mean of four detection gradient is adopted to detect the small and dim ship target. The simulation results show that the method of sea-sky-line detection based on fully convolutional networks can overcome the disadvantages of the traditional methods and is suitable for complex background. The detection method proposed can filter the white noise point on the sea surface and thus can reduce false alarm, through which the detection of small and dim ship can be completed well.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110381
Author(s):  
Xue Bai ◽  
Ze Liu ◽  
Jie Zhang ◽  
Shengye Wang ◽  
Qing Hou ◽  
...  

Fully convolutional networks were developed for predicting optimal dose distributions for patients with left-sided breast cancer and compared the prediction accuracy between two-dimensional and three-dimensional networks. Sixty cases treated with volumetric modulated arc radiotherapy were analyzed. Among them, 50 cases were randomly chosen to conform the training set, and the remaining 10 were to construct the test set. Two U-Net fully convolutional networks predicted the dose distributions, with two-dimensional and three-dimensional convolution kernels, respectively. Computed tomography images, delineated regions of interest, or their combination were considered as input data. The accuracy of predicted results was evaluated against the clinical dose. Most types of input data retrieved a similar dose to the ground truth for organs at risk ( p > 0.05). Overall, the two-dimensional model had higher performance than the three-dimensional model ( p < 0.05). Moreover, the two-dimensional region of interest input provided the best prediction results regarding the planning target volume mean percentage difference (2.40 ± 0.18%), heart mean percentage difference (4.28 ± 2.02%), and the gamma index at 80% of the prescription dose are with tolerances of 3 mm and 3% (0.85 ± 0.03), whereas the two-dimensional combined input provided the best prediction regarding ipsilateral lung mean percentage difference (4.16 ± 1.48%), lung mean percentage difference (2.41 ± 0.95%), spinal cord mean percentage difference (0.67 ± 0.40%), and 80% Dice similarity coefficient (0.94 ± 0.01). Statistically, the two-dimensional combined inputs achieved higher prediction accuracy regarding 80% Dice similarity coefficient than the two-dimensional region of interest input (0.94 ± 0.01 vs 0.92 ± 0.01, p < 0.05). The two-dimensional data model retrieves higher performance than its three-dimensional counterpart for dose prediction, especially when using region of interest and combined inputs.


Author(s):  
William H. Meeks ◽  
Pablo Mira ◽  
Joaquín Pérez ◽  
Antonio Ros

Abstract We prove that two spheres of the same constant mean curvature in an arbitrary homogeneous three-manifold only differ by an ambient isometry, and we determine the values of the mean curvature for which such spheres exist. This gives a complete classification of immersed constant mean curvature spheres in three-dimensional homogeneous manifolds.


2020 ◽  
Vol 10 (7) ◽  
pp. 2528 ◽  
Author(s):  
Lu Deng ◽  
Hong-Hu Chu ◽  
Peng Shi ◽  
Wei Wang ◽  
Xuan Kong

Cracks are often the most intuitive indicators for assessing the condition of in-service structures. Intelligent detection methods based on regular convolutional neural networks (CNNs) have been widely applied to the field of crack detection in recently years; however, these methods exhibit unsatisfying performance on the detection of out-of-plane cracks. To overcome this drawback, a new type of region-based CNN (R-CNN) crack detector with deformable modules is proposed in the present study. The core idea of the method is to replace the traditional regular convolution and pooling operation with a deformable convolution operation and a deformable pooling operation. The idea is implemented on three different regular detectors, namely the Faster R-CNN, region-based fully convolutional networks (R-FCN), and feature pyramid network (FPN)-based Faster R-CNN. To examine the advantages of the proposed method, the results obtained from the proposed detector and corresponding regular detectors are compared. The results show that the addition of deformable modules improves the mean average precisions (mAPs) achieved by the Faster R-CNN, R-FCN, and FPN-based Faster R-CNN for crack detection. More importantly, adding deformable modules enables these detectors to detect the out-of-plane cracks that are difficult for regular detectors to detect.


2020 ◽  
Vol 9 (10) ◽  
pp. 571
Author(s):  
Jinglun Li ◽  
Jiapeng Xiu ◽  
Zhengqiu Yang ◽  
Chen Liu

Semantic segmentation plays an important role in being able to understand the content of remote sensing images. In recent years, deep learning methods based on Fully Convolutional Networks (FCNs) have proved to be effective for the sematic segmentation of remote sensing images. However, the rich information and complex content makes the training of networks for segmentation challenging, and the datasets are necessarily constrained. In this paper, we propose a Convolutional Neural Network (CNN) model called Dual Path Attention Network (DPA-Net) that has a simple modular structure and can be added to any segmentation model to enhance its ability to learn features. Two types of attention module are appended to the segmentation model, one focusing on spatial information the other focusing upon the channel. Then, the outputs of these two attention modules are fused to further improve the network’s ability to extract features, thus contributing to more precise segmentation results. Finally, data pre-processing and augmentation strategies are used to compensate for the small number of datasets and uneven distribution. The proposed network was tested on the Gaofen Image Dataset (GID). The results show that the network outperformed U-Net, PSP-Net, and DeepLab V3+ in terms of the mean IoU by 0.84%, 2.54%, and 1.32%, respectively.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Yaghoub Dabiri ◽  
Kevin L. Sack ◽  
Nuno Rebelo ◽  
Peter Wang ◽  
Yunjie Wang ◽  
...  

We sought to calibrate mechanical properties of left ventricle (LV) based on three-dimensional (3D) speckle tracking echocardiographic imaging data recorded from 16 segments defined by American Heart Association (AHA). The in vivo data were used to create finite element (FE) LV and biventricular (BV) models. The orientation of the fibers in the LV model was rule based, but diffusion tensor magnetic resonance imaging (MRI) data were used for the fiber directions in the BV model. A nonlinear fiber-reinforced constitutive equation was used to describe the passive behavior of the myocardium, whereas the active tension was described by a model based on tissue contraction (Tmax). isight was used for optimization, which used abaqus as the forward solver (Simulia, Providence, RI). The calibration of passive properties based on the end diastolic pressure volume relation (EDPVR) curve resulted in relatively good agreement (mean error = −0.04 ml). The difference between the experimental and computational strains decreased after segmental strain metrics, rather than global metrics, were used for calibration: for the LV model, the mean difference reduced from 0.129 to 0.046 (circumferential) and from 0.076 to 0.059 (longitudinal); for the BV model, the mean difference nearly did not change in the circumferential direction (0.061) but reduced in the longitudinal direction from 0.076 to 0.055. The calibration of mechanical properties for myocardium can be improved using segmental strain metrics. The importance of realistic fiber orientation and geometry for modeling of the LV was shown.


Sign in / Sign up

Export Citation Format

Share Document