Solitary and Periodic Wave Solutions of Sasa–Satsuma Equation and Their Relationship with Hamilton Energy
In this paper, we study the exact solitary wave solutions and periodic wave solutions of the S-S equation and give the relationships between solutions and the Hamilton energy of their amplitudes. First, on the basis of the theory of dynamical system, we make qualitative analysis on the amplitudes of solutions. Then, by using undetermined hypothesis method, the first integral method, and the appropriate transformation, two bell-shaped solitary wave solutions and six exact periodic wave solutions are obtained. Furthermore, we discuss the evolutionary relationships between these solutions and find that the appearance of these solutions for the S-S equation is essentially determined by the value which the Hamilton energy takes. Finally, we give some diagrams which show the changing process from the periodic wave solutions to the solitary wave solutions when the Hamilton energy changes.