scholarly journals Solitary and Periodic Wave Solutions of Sasa–Satsuma Equation and Their Relationship with Hamilton Energy

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Weiguo Zhang ◽  
Xingqian Ling ◽  
Bei-Bei Wang ◽  
Shaowei Li

In this paper, we study the exact solitary wave solutions and periodic wave solutions of the S-S equation and give the relationships between solutions and the Hamilton energy of their amplitudes. First, on the basis of the theory of dynamical system, we make qualitative analysis on the amplitudes of solutions. Then, by using undetermined hypothesis method, the first integral method, and the appropriate transformation, two bell-shaped solitary wave solutions and six exact periodic wave solutions are obtained. Furthermore, we discuss the evolutionary relationships between these solutions and find that the appearance of these solutions for the S-S equation is essentially determined by the value which the Hamilton energy takes. Finally, we give some diagrams which show the changing process from the periodic wave solutions to the solitary wave solutions when the Hamilton energy changes.

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Yadong Shang ◽  
Xiaoxiao Zheng

This paper is concerned with the system of Zakharov equations which involves the interactions between Langmuir and ion-acoustic waves in plasma. Abundant explicit and exact solutions of the system of Zakharov equations are derived uniformly by using the first integral method. These exact solutions are include that of the solitary wave solutions of bell-type fornandE, the solitary wave solutions of kink-type forEand bell-type forn, the singular traveling wave solutions, periodic wave solutions of triangle functions, Jacobi elliptic function doubly periodic solutions, and Weierstrass elliptic function doubly periodic wave solutions. The results obtained confirm that the first integral method is an efficient technique for analytic treatment of a wide variety of nonlinear systems of partial differential equations.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Shoukry Ibrahim Atia El-Ganaini

By using the first integral method, the traveling wave solutions for the generalized Pochhammer-Chree (PC) equations are constructed. The obtained results include complex exponential function solutions, complex traveling solitary wave solutions, complex periodic wave solutions, and complex rational function solutions. The power of this manageable method is confirmed.


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Ming Song ◽  
Zhengrong Liu

We use the bifurcation method of dynamical systems to study the periodic wave solutions and their limits for the generalized KP-BBM equation. A number of explicit periodic wave solutions are obtained. These solutions contain smooth periodic wave solutions and periodic blow-up solutions. Their limits contain periodic wave solutions, kink wave solutions, unbounded wave solutions, blow-up wave solutions, and solitary wave solutions.


2012 ◽  
Vol 22 (12) ◽  
pp. 1250305 ◽  
Author(s):  
JIBIN LI ◽  
ZHIJUN QIAO

In this paper, we apply the method of dynamical systems to a generalized two-component Camassa–Holm system. Through analysis, we obtain solitary wave solutions, kink and anti-kink wave solutions, cusp wave solutions, breaking wave solutions, and smooth and nonsmooth periodic wave solutions. To guarantee the existence of these solutions, we give constraint conditions among the parameters associated with the generalized Camassa–Holm system. Choosing some special parameters, we obtain exact parametric representations of the traveling wave solutions.


2006 ◽  
Vol 16 (08) ◽  
pp. 2235-2260 ◽  
Author(s):  
JIBIN LI ◽  
JIANHONG WU ◽  
HUAIPING ZHU

Using the method of planar dynamical systems to a higher order wave equations of KdV type, the existence of smooth and nonsmooth solitary wave, kink wave and uncountably infinite many periodic wave solutions is proved. In different regions of the parametric space, the sufficient conditions to guarantee the existence of the above solutions are given. In some spatial conditions, the exact explicit parametric representations of solitary wave solutions are determined.


2009 ◽  
Vol 64 (5-6) ◽  
pp. 309-314 ◽  
Author(s):  
Song-Hua Ma ◽  
Yi-Pin Lu ◽  
Jian-Ping Fang ◽  
Zhi-Jie Lv

Abstract With an extended mapping approach and a linear variable separation approach, a series of solutions (including theWeierstrass elliptic function solutions, solitary wave solutions, periodic wave solutions and rational function solutions) of the (2+1)-dimensional modified dispersive water-wave system (MDWW) is derived. Based on the derived solutions and using some multi-valued functions, we find a few new folded solitary wave excitations.


2018 ◽  
Vol 23 (1) ◽  
pp. 17-32 ◽  
Author(s):  
Fanchao Kong ◽  
Zhiguo Luo ◽  
Hongjun Qiu

This work deals with the existence of periodic wave solutions and nonexistence of solitary wave solutions for a class of second-order singular p-Laplacian systems with impulsive effects. A sufficient criterion for the solutions of the considered system is provided via an innovative method of the mountain pass theorem and an approximation technique. Some corresponding results in the literature can be enriched and extended.


Sign in / Sign up

Export Citation Format

Share Document