scholarly journals Low-Cyclic Loading Tests of Self-Centering Variable Friction (SCVF) Brace

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Qingguang He ◽  
Yanxia Bai ◽  
Weike Wu ◽  
Yongfeng Du

A novel assembled self-centering variable friction (SCVF) brace is proposed which is composed of an energy dissipation system, a self-centering system, and a set of force transmission devices. The hysteretic characteristics and energy dissipation of the SCVF brace with various parameters from low-cyclic loading tests are presented. A finite element model was constructed and tested under simulated examination for comparative analysis. The results indicate that the brace shows an atypical flag-type hysteresis curve. The SCVF brace showed its stable self-centering ability and dissipation energy capacity within the permitted axial deformation under different spring and friction plates. A larger deflection of the friction plate will make the variable friction of this SCVF brace more obvious. A higher friction coefficient will make the energy dissipation capacity of the SCVF brace stronger, but the actual friction coefficient will be lower than the design value after repeated cycles. The results of the fatigue tests showed that the energy dissipation system formed by the ceramic fiber friction blocks and the friction steel plates in the SCVF brace has a certain stability. The finite element simulation results are essentially consistent with the obtained test results, which is conducive to the use of finite element software for calculation and structural analysis in actual engineering design.

2012 ◽  
Vol 256-259 ◽  
pp. 2079-2084 ◽  
Author(s):  
Tie Cheng Wang ◽  
An Gao ◽  
Hai Long Zhao

The influence of the pile type and the stirrup on the seismic performance was evaluated based on the results of reversed cyclic loading tests on the four prestressed high strength concrete (PHC) piles. It is indicated that the AB-type pile has the better seismic performance than the A-type pile from the results. The bearing capacity does not increase obviously with decreasing of the stirrup spacing and increasing of the stirrup diameter. The degradation of stiffness does not decrease significantly with decreasing of the stirrup spacing and increasing of the stirrup diameter. The energy dissipation capacity is improved with increasing of the stirrup diameter and decreasing of the stirrup spacing.


2013 ◽  
Vol 56 ◽  
pp. 682-690 ◽  
Author(s):  
Peng Pan ◽  
Alexandre Lam ◽  
Xuchuan Lin ◽  
Yixin Li ◽  
Lieping Ye

2014 ◽  
Vol 1079-1080 ◽  
pp. 22-27
Author(s):  
Shao Wu Zhang ◽  
Geng Biao Zhang ◽  
Ying Chuan Chen

In order to verify the feasibility of a new overallseismic reinforcement method of the framework. Firstly,carried low cyclic loading tests on reinforcedconcrete framework, then reinforced the framework with a new method, and repeatthe low cyclic loading tests , finally, compared and analyzed the data from twotests. Compared with the original framework, the shape of the hysteresis curveis more full and the skeleton curve of the parallel period is longer andthe ductility factor increased by 35% and the bearing capacity increased by 40%.The results show that reinforcement framework has better energy dissipationcapacity, ductility and transgender capacity.


2014 ◽  
Vol 8 (1) ◽  
pp. 270-278 ◽  
Author(s):  
Cui Chunyi ◽  
Zhao Jinfeng ◽  
Zhang Yannian ◽  
Zuo Wenxin

The mechanical performance of a new proposed type of cross-shaped connection with concrete-filled steel tubular (CFST) column and assembled steel H-beam was investigated. Cyclic loading tests on the cross-shaped connections are carried out by using MTS servo loading system. Comparative analyses are conducted based on the experimental results including hysteretic curves, skeleton curves and stiffness degradation curves as well as ductility coefficients of cyclic loading tests. Furthermore, effects of geometric parameters of ring-stiffened plate, axial compression ratio and backing plate on the deformation performance of cross-shaped connections are analyzed. The results show that the increase of width of ring plate and the shape change of ring plate from square to circle can both significantly improve the ductility and the hysteretic characteristics of connection. It is emphasized that the specimen with square ring plates is of better deformation performance but lower bearing capacity than the ones with circular ring plates. Besides, the backing plates always have positive effects on the hysteretic characteristics, ductility and energy dissipation of the CFST column connections. Conversely, the increase of axial compression ratio contributes negatively to both the bearing capacity and deformation performance of the connection specimens. It can be concluded that the presented cross-shaped connection is of good deformation performance relating to hysteretic characteristics, energy dissipation and ductility, which can provide reference towards engineering practice with potential perspective application.


2013 ◽  
Vol 479-480 ◽  
pp. 421-426 ◽  
Author(s):  
Wei Ting Lin ◽  
Tseng Chih Fu ◽  
Yuan Chieh Wu ◽  
Chin Cheng Huang

Since the friction coefficient is critical to the seismic stability of a freestanding cask, cyclic loading tests of a 1/3 scale-down pedestal specimen of the INER-dry storage cask system, which will be used in Taiwan, were conducted to acquire the actual friction coefficient at the cask/pad interface as well as the effect of normal stress and sliding rate on it. Test results indicated that the cyclic frequency had few influence on the friction coefficient and the friction coefficient increased with the normal stress increased. The friction coefficient of the vertical cylindrical cask with an add-on shield, vertical cylindrical cask and add-on shield under actual loading condition was about 0.67, 0.60 and 0.73, respectively. Based on the frictional properties at the cask/pad interface obtained from the test results, it was performed to ensure the actual seismic stability of this INER-dry storage cask system under the design base earthquake.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Hui Wang ◽  
Jian-jun Chang ◽  
Shi-qin He ◽  
Qing-lei Zhang

Low-cyclic loading tests were carried on brick walls bonded with mud reinforced by three methods: packing belts, one-side steel-meshed cement mortar, and double-side steel-meshed cement mortar. The failure modes, hysteresis curves of the load-displacement, skeleton curves, and ductility were obtained. The results showed that the bearing capacity of the brick walls bonded with mud reinforced by the abovementioned three methods had been increased to 1.4, 1.7, and 2.2 times as much as that of the unreinforced brick walls, respectively, and the ductility of the reinforced brick walls had been increased to 4.7, 2.1 and 2.2 times, respectively. The integrity and ductility of the reinforced brick walls were effectively improved in different degrees. The experimental results provided specific seismic strengthening techniques for the farmhouses built with brick walls bonded with mud.


Sign in / Sign up

Export Citation Format

Share Document