scholarly journals Gear Fault Diagnosis Based on VMD Sample Entropy and Discrete Hopfield Neural Network

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jiakai Ding ◽  
Dongming Xiao ◽  
Liangpei Huang ◽  
Xuejun Li

The gear fault signal has some defects such as nonstationary nonlinearity. In order to increase the operating life of the gear, the gear operation is monitored. A gear fault diagnosis method based on variational mode decomposition (VMD) sample entropy and discrete Hopfield neural network (DHNN) is proposed. Firstly, the optimal VMD decomposition number is selected by the instantaneous frequency mean value. Then, the sample entropy value of each intrinsic mode function (IMF) is extracted to form the gear feature vectors. The gear feature vectors are coded and used as the memory prototype and memory starting point of DHNN, respectively. Finally, the coding vector is input into DHNN to realize fault pattern recognition. The newly defined coding rules have a significant impact on the accuracy of gear fault diagnosis. Driven by self-associative memory, the coding of gear fault is accurately classified by DHNN. The superiority of the VMD-DHNN method in gear fault diagnosis is verified by comparing with an advanced signal processing algorithm. The results show that the accuracy based on VMD sample entropy and DHNN is 91.67% of the gear fault diagnosis method. The experimental results show that the VMD method is better than the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and empirical mode decomposition (EMD), and the effect of it in the diagnosis of gear fault diagnosis is emphasized.

2019 ◽  
Vol 9 (24) ◽  
pp. 5424 ◽  
Author(s):  
Dongming Xiao ◽  
Jiakai Ding ◽  
Xuejun Li ◽  
Liangpei Huang

A gear fault diagnosis method based on kurtosis criterion variational mode decomposition (VMD) and self-organizing map (SOM) neural network is proposed. Firstly, the VMD algorithm is used to decompose the gear vibration signal, and the instantaneous frequency mean is calculated as the evaluation index, and the characteristic curve is drawn to screen out the most relevant intrinsic mode functions (IMFs) of the original vibration signal. Then, the number of VMD decompositions is determined, and the kurtosis value of IMFs are extracted to form the feature vectors. Then, the kurtosis value feature vectors of IMFs are normalized to form the kurtosis value normalized vectors. Finally, the normalized vectors of kurtosis value are input into SOM neural network to realize gear fault diagnosis. When the number of training times of SOM neural network is 100, the gear fault category is accurately classified by SOM neural network. The results show that when the training times of SOM neural network is 100 times, the gear fault diagnosis method, based on the kurtosis criterion VMD and SOM neural network is 100%, which indicates that the new method has a good effect on gear fault diagnosis.


2013 ◽  
Vol 694-697 ◽  
pp. 1151-1154
Author(s):  
Wen Bin Zhang ◽  
Ya Song Pu ◽  
Jia Xing Zhu ◽  
Yan Ping Su

In this paper, a novel fault diagnosis method for gear was approached based on morphological filter, ensemble empirical mode decomposition (EEMD), sample entropy and grey incidence. Firstly, in order to eliminate the influence of noises, the line structure element was selected for morphological filter to denoise the original signal. Secondly, denoised vibration signals were decomposed into a finite number of stationary intrinsic mode functions (IMF) and some containing the most dominant fault information were calculated the sample entropy. Finally, these sample entropies could serve as the feature vectors, the grey incidence of different gear vibration signals was calculated to identify the fault pattern and condition. Practical results show that this method can be used in gear fault diagnosis effectively.


2013 ◽  
Vol 310 ◽  
pp. 328-333 ◽  
Author(s):  
Bing Luo ◽  
Wen Tong Yang ◽  
Zhi Feng Liu ◽  
Yong Sheng Zhao ◽  
Li Gang Cai

Gear is the most common mechanical transmission equipment. Therefore, gear fault diagnosis is of much significance. In this article, a gear fault diagnosis method based on the integration of empirical mode decomposition and cepstrum is proposed by introducing empirical mode decomposition and cepstrum into gear fault analysis. Firstly EMD is used to decompose the gear vibration signal finite number of intrinsic mode functions and a residual error item. To do gear fault diagnosis, cepstrum analysis is carried upon those intrinsic mode functions to extract feature information from the vibration signal. The results of the study on simulated and experimental signals show that this method is better than the cepstrum method and it can precisely locate the site of gear failure.


Measurement ◽  
2020 ◽  
pp. 108575
Author(s):  
Xinglong Wang ◽  
Jinde Zheng ◽  
Haiyang Pan ◽  
Qingyun Liu ◽  
Chengjun Wang

Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 680 ◽  
Author(s):  
Zhang ◽  
Zhou

This study presents a comprehensive fault diagnosis method for rolling bearings. The method includes two parts: the fault detection and the fault classification. In the stage of fault detection, a threshold based on refined composite multiscale dispersion entropy (RCMDE) at a local maximum scale is defined to judge the health state of rolling bearings. If the bearing is in fault, a generalized multi-scale feature extraction method is developed to fully extract fault information by combining fast ensemble empirical mode decomposition (FEEMD) and RCMDE. Firstly, the fault vibration signals are decomposed into a set of intrinsic mode functions (IMFs) by FEEMD. Secondly, the RCMDE value of multiple IMFs is calculated to generate a candidate feature pool. Then, the maximum-relevance and minimum-redundancy (mRMR) approach is employed to select the sensitive features from the candidate feature pool to construct the final feature vectors, and the final feature vectors are fed into random forest (RF) classifier to identify different fault working conditions. Finally, experiments and comparative research are carried out to verify the performance of the proposed method. The results show that the proposed method can detect faults effectively. Meanwhile, it has a more robust and excellent ability to identify different fault types and severity compared with other conventional approaches.


Sign in / Sign up

Export Citation Format

Share Document