Nonlinear Optimization Method for Transmission Error of Hypoid Gear Machined by the Duplex Helical Method
In this study, synchronous cutting of concave and convex surfaces for hypoid gear was achieved using a duplex helical method. Precise, nonlinear optimization of the transmission error driven by machine tool parameters was performed to reduce the vibration noise of the gear pair. First, the transmission error curve and contact path of the tooth surface of the initial pinion were solved using tooth contact analysis. Second, according to the preset parabolic transmission error curve, the initial gear was used to generate the target pinion, which coincided with the contact path of the initial pinion. Finally, a deviation correction model of the discrete points, corresponding to the contact paths on the concave and convex surfaces of the target and initial pinions, was established. This model was solved using the Levenberg–Marquard algorithm with the trust region strategy, to obtain optimized machine tool parameters. Synchronous optimization of the transmission errors of concave and convex surfaces of the pinion was achieved by correcting the deviations of the contact points. The effectiveness of the proposed method was verified by a numerical example and by performing a contact area rolling test.