scholarly journals Weak Hopf Algebra and Its Quiver Representation

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Muhammad Naseer Khan ◽  
Ahmed Munir ◽  
Muhammad Arshad ◽  
Ahmed Alsanad ◽  
Suheer Al-Hadhrami

This study induced a weak Hopf algebra from the path coalgebra of a weak Hopf quiver. Moreover, it gave a quiver representation of the said algebra which gives rise to the various structures of the so-called weak Hopf algebra through the quiver. Furthermore, it also showed the canonical representation for each weak Hopf quiver. It was further observed that a Cayley digraph of a Clifford monoid can be embedded in its corresponding weak Hopf quiver of a Clifford monoid. This lead to the development of the foundation structures of weak Hopf algebra. Such quiver representation is useful for the classification of its path coalgebra. Additionally, some structures of module theory of algebra were also given. Such algebras can also be applied for obtaining the solutions of “quantum Yang–Baxter equation” that has many applications in the dynamical systems for finding interesting results.

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Liangyun Zhang ◽  
Linhan Li ◽  
Huihui Zheng

In this paper, we introduce the concept of Rota-Baxter Leibniz algebras and explore two characterizations of Rota-Baxter Leibniz algebras. And we construct a number of Rota-Baxter Leibniz algebras from Leibniz algebras and associative algebras and discover some Rota-Baxter Leibniz algebras from augmented algebra, bialgebra, and weak Hopf algebra. In the end, we give all Rota-Baxter operators of weight 0 and -1 on solvable and nilpotent Leibniz algebras of dimension ≤3, respectively.


2003 ◽  
Vol 46 (2) ◽  
pp. 164-177 ◽  
Author(s):  
Andrew J. Dean

AbstractAn AF flow is a one-parameter automorphism group of an AF C*-algebra A such that there exists an increasing sequence of invariant finite dimensional sub-C*-algebras whose union is dense in A. In this paper, a classification of C*-dynamical systems of this form up to equivariant isomorphism is presented. Two pictures of the actions are given, one in terms of a modified Bratteli diagram/pathspace construction, and one in terms of a modified K0 functor.


2015 ◽  
Vol 14 (3) ◽  
pp. 1454-1477 ◽  
Author(s):  
Nicola Guglielmi ◽  
Ernst Hairer
Keyword(s):  

Science ◽  
2018 ◽  
Vol 361 (6406) ◽  
pp. eaat6412 ◽  
Author(s):  
Alan Hastings ◽  
Karen C. Abbott ◽  
Kim Cuddington ◽  
Tessa Francis ◽  
Gabriel Gellner ◽  
...  

The importance of transient dynamics in ecological systems and in the models that describe them has become increasingly recognized. However, previous work has typically treated each instance of these dynamics separately. We review both empirical examples and model systems, and outline a classification of transient dynamics based on ideas and concepts from dynamical systems theory. This classification provides ways to understand the likelihood of transients for particular systems, and to guide investigations to determine the timing of sudden switches in dynamics and other characteristics of transients. Implications for both management and underlying ecological theories emerge.


Author(s):  
Roger Ghanem ◽  
Francesco Romeo

Abstract A procedure is developed for the identification and classification of nonlinear and time-varying dynamical systems based on measurements of their input and output. The procedure consists of reducing the governing equations with respect to a basis of scaling functions. Given the localizing properties of wavelets, the reduced system is well adapted to predicting local changes in time as well as changes that are localized to particular components of the system. The reduction process relies on traditional Galerkin techniques and recent analytical expressions for evaluating the inner product between scaling functions and their derivatives. Examples from a variety of dynamical systems are used to demonstrate the scope and limitations of the proposed method.


2014 ◽  
Vol 06 (04) ◽  
pp. 465-540 ◽  
Author(s):  
Karen R. Strung ◽  
Wilhelm Winter

In this paper we show that certain simple locally recursive subhomogeneous (RSH) C*-algebras are tracially approximately interval algebras after tensoring with the universal UHF algebra. This involves a linear algebraic encoding of the structure of the local RSH algebra allowing us to find a path through the algebra which looks like a discrete version of [0, 1] and exhausts most of the algebra. We produce an actual copy of the interval and use properties of C*-algebras tensored with UHF algebras to move the honest interval underneath the discrete version. It follows from our main result that such C*-algebras are classifiable by Elliott invariants. Our theorem requires finitely many tracial states that all induce the same state on the K0-group; in particular we do not require that projections separate tracial states. We apply our results to classify some examples of C*-algebras constructed by Elliott to exhaust the invariant. We also give an alternative way to classify examples of Lin and Matui of C*-algebras of minimal dynamical systems. In this way our result can be viewed as a first step towards removing the requirement that projections separate tracial states in the classification theorem for C*-algebras of minimal dynamical systems given by Toms and the second named author.


Sign in / Sign up

Export Citation Format

Share Document