scholarly journals Breviscapine Participates in the Progression of Prostate Cancer by Inhibiting ZFP91 Expression through Upregulation of MicroRNA-129-5p

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jie Yang ◽  
Wanjun Jin ◽  
Xiaokang Zhang ◽  
Pengcheng Chang ◽  
Duo Zheng

Objective. To investigate the effect of breviscapine (BVP) on the development of prostate cancer and its molecular mechanism. Materials and Methods. After treatment with breviscapine and microRNA-129-5p, MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) and cell counting kit-8 (CCK-8) tests were performed to examine the proliferation rate of cells, while Transwell was used to analyze cell migration ability; at the same time, quantitative real-time polymerase chain reaction (qRT-PCR) was applied to detect the expression of microRNA-129-5p and ZFP91 in prostate cancer cells. In addition, the binding of microRNA-129-5p and ZFP91 was confirmed by dual-luciferase reporting assay; meanwhile, cell reverse experiment verified that breviscapine can regulate ZFP91 via upregulating microRNA-129-5p. Results. The results of MTT, CCK-8, and Transwell experiments demonstrated that breviscapine inhibited the proliferation as well as the migration capacities of PC cells; meanwhile, it upregulated the level of microRNA-129-5p in PC cells while downregulated that of ZFP91. Furthermore, dual-luciferase reporter gene assay verified that ZFP91 was a potential target of microRNA-129-5p. Finally, cell reverse experiment confirmed that breviscapine downregulated ZFP91 expression by upregulating microRNA-129-5p, while downregulation of microRNA-129-5p partially reversed the inhibitory effect of breviscapine on cell proliferation ability. Conclusions. Breviscapine may inhibit the expression of ZFP91 through upregulating microRNA-129-5p and thus participating in the progression of PC.

Open Medicine ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 913-919
Author(s):  
Quan Liang ◽  
Qingjuan Yao ◽  
GuoYing Hu

AbstractObjectiveTo investigate the involvement of miR-520e in the modulation of cancer-promoting cyclinD1 in breast cancer.MethodsA reverse transcription-polymerase chain reaction (RT-PCR) was applied to test the regulation of miR-520e on cyclinD1. The binding of miR-520e to 3’-untranslated region (3’UTR) of cyclinD1 mRNA was predicted by an online bioinformatics website. The effect of miR-520e on the luciferase reporters with binding sites of miR-520e and 3’UTR of cyclinD1 mRNA was revealed using a luciferase reporter gene assay. The correlation between miR-520e and cyclinD1 in clinical breast cancer samples was detected through quantitative real-time PCR.ResultsThe expression of cyclinD1 was gradually reduced as the dose of miR-520e increased. Anti-miR-520e obviously induced cyclinD1 in breast cancer cells. After anti-miR-520e was introduced into the cells, the inhibition of cyclinD1 expression mediated by miR-520e was reversed. The binding of miR-520e with cyclinD1 was revealed via bioinformatics. Under the treatment of dose-increasing miR-520e or anti-miR-520e, the luciferase activities of cyclinD1 3’UTR vector were lower or higher by degrees. However, the activity of the mutant vector was not affected at all. Finally, in clinical breast cancer tissues the negative correlation of miR-520e with cyclinD1 was revealed.ConclusionIn conclusion, cyclinD1 is a new target of miR-520e in breast cancer.


2021 ◽  
Author(s):  
Zhibin Zhang ◽  
Xu Zhao ◽  
Rui Zhu ◽  
Hong Ren

Abstract Aim:In this manuscript, we aimed to investigate the involvement of non-coding RNAs in mediating trastuzumab effects in EAC. Background: Scarce evidences supported that targeted drugs, like Trastuzumab, can be applied to esophageal adenocarcinoma patients (EAC). Objective: Evaluating the role and mechanism of NR2F2-AS1 in regulating Trastuzumab effects in EAC patients. Method: RNA sequencing to screen IGF1R related lncRNAs. qRT-PCR and western blot were used to evaluate the expression level of genes. CCK-8 was used to test the cell proliferation ability. Dual luciferase reporter gene assay and RNA pull-down were used for crosstalk evaluation. Results: NR2F2-AS1 was identified to be associated with HER2 expression by RNA sequencing and its expression related to worse prognosis and advanced T and N stage.NR2F2-AS1 expression induced by Trastuzumab through mediating H3K27ac. Furtherly, miR-4429 and miR-425-5p, which were predicted and proved to interact with NR2F2-AS1 and IGF1R, expressed lowly in esophageal cancer both in vivo and in vitro and suppressed cell viability. Most importantly, miR-4429 and miR-425-5p overexpression could increase trastuzumab’s inhibitory effect on cell viability. Conclusion: Trastuzumab has the potential to suppress EAC progression mainly in the presence of miR-4429 and miR-425-5p overexpression targeting HER2. However, Trastuzumab induces exosomal NR2F2-AS1 expression, which binds to miR-4429 and miR-425-5p to suppress their expression, resulting in the failure of trastuzumab treatment. Therefore, targeting exosomes might be a novel way to develop auxiliary drugs for trastuzumab in EAC.


2021 ◽  
Author(s):  
Xian Zhao ◽  
Xiaojing Xu ◽  
Qiong Wang ◽  
Xiaofei Wu

Abstract Background: Majority of cancer related deaths in males are attributed to prostate cancer (PRAD) throughout the world. Recently, the role of long non-coding RNAs (lncRNAs) in the pathogenesis of cancer has been widely explored. In this study, we investigated the role of lncRNA LINC01213 (LINC01213) in tumorigenesis of prostate cancer (PRAD).Methods: PRAD and adjacent tissue samples were collected from cancer patients. Survival rate among these patients was compared by Kaplan–Meier analysis. PRAD cells viability was estimated by CCK-8 method while AnnexinV/PI cytometry assay was used to determine the percent of apoptotic cells. qRT-PCR and western blot assay were used to determine the mRNA and protein expressions, respectively. Interaction between LINC01213 and corresponding miRNA as well as between miRNA and mRNA was confirmed by dual luciferase reporter gene assay. PRAD cells were also injected subcutaneously in nude mice to support in vitro findings.Results: It was observed that LINC01213 was highly expressed in PRAD samples and cell lines. Down-regulation of LINC01213 in PRAD cells decreased cell viability and inhibited proliferation. Luciferase reporter gene assay and RNA pull-down confirmed that LINC01213 targeted miR-597-3p. Increased expression of miR-597-3p resulted in decreased BCL2L2 expression in vitro. Inhibitory effects of miR-597-3p on PRAD cells’ survival and growth were diminished after LINC01213 overexpression which was also associated with alteration in the protein expression of BCL-xL, BCL-2 as well as caspase 3 and caspase 9.Conclusion: Taken together, our findings suggest that LINC01213 plays its role in PRAD tumorigenesis through miR-597-3p/ BCL2L2 dependent pathway with associated modulation of genes involved in cell survival and apoptosis.


2020 ◽  
Vol 21 (2) ◽  
pp. 278-286 ◽  
Author(s):  
Shunbin Dong ◽  
Ying Fu ◽  
Kaibo Yang ◽  
Xing Zhang ◽  
Runchen Miao ◽  
...  

Background: Oxaliplatin (L-OHP)-based chemotherapy, such as FOLFOX4 (5-fluorouracil, leucovorin, and LOHP), improves the prognosis of patients with late-stage Hepatocellular Carcinoma (HCC). However, the development of resistance to L-OHP leads to failure of chemotherapy. The aim of this study was to investigate the role of linc01559 and miR-6783-3p in regulating resistance to L-OHP. Methods: Quantitative reverse transcription-polymerase chain reaction was used to determine the expression profile. The Cell Counting Kit-8 test and wound healing assay were also used. Dual-luciferase reporter gene assay, RNA pull-down assay, and RNA immunoprecipitation were used to evaluate the interaction between linc01559 and miR-6783-3p. Result: linc01559 expression was associated with response to FOLFOX4, as well as miR-1343-3p and miR-6783-3p expression in vivo. A nomogram, including linc01559 and miR-1343-3p, precisely and accurately predicted the overall survival of patients with HCC. Regarding the in vitro tests, linc01559 showed higher expression in L-OHP-resistant cell lines, whereas miR-6783-3p was downregulated. Knockdown of linc01559 led to decreased proliferation and migration ability, and increased expression of miR-6783-3p; however, it did not influence the expression of miR-1343-3p. We also found that linc01559 directly interacted with miR-6783-3p. Furthermore, linc01559 and miR-6783-3p regulated the viability of L-OHP-resistant cells following treatment with L-OHP. Conclusion: linc01559 promoted the proliferation of HCC by sponging miR-6783-3p. This suggests that linc01559/miR6783-3p may be key factors in regulating resistance and response to L-OHP. Moreover, they may be potential therapeutic targets for improving sensitivity to L-OHP in patients with HCC.


2021 ◽  
Vol 20 ◽  
pp. 153303382097234
Author(s):  
Bo Liao ◽  
Shuangquan Chen ◽  
Yugen Li ◽  
Zhaohui Yang ◽  
Ying Yang ◽  
...  

Background: Long non-coding RNA bladder cancer associated transcript 1 (BLACAT1) is oncogenic in several types of cancers. However, little is known concerning its expression and function in prostate cancer. Methods: Paired prostate cancer samples were collected, and the expression levels of BLACAT1, miR-29a-3p and disheveled segment polarity protein 3 (DVL3) were examined by quantitative real-time polymerase chain reaction (qRT-PCR); BLACAT1 shRNAs were transfected into PC-3 and LNCaP cell lines, and proliferative ability was detected by cell counting kit-8 (CCK-8) assay; qRT-PCR and Western blot were used to analyze the changes of miR-29a-3p and DVL3; dual-luciferase reporter gene assay was used to determine the regulatory relationships between miR-29a-3p and BLACAT1, and miR-29a-3p and DVL3. Results: BLACAT1 expression was significantly up-regulated in cancerous tissues of prostate cancer samples and positively correlated with the expression of DVL3, while negatively associated with miR-29a-3p. After the transfection of BLACAT1 shRNAs into prostate cancer cells, the proliferative ability and metastatic ability of cancer cells were significantly inhibited; BLACAT1 shRNAs could reduce the expression of DVL3 on both mRNA and protein expressions levels, the luciferase activity of BLACAT1 reporter was inhibited by miR-29a-3p, and DVL3 was validated as a target gene of miR-29a-3p. Conclusion: BLACAT1 expression is abnormally up-regulated in prostate cancer tissues. BLACAT1 can modulate the proliferative and metastatic ability of prostate cancer cells and have the potential to be the “ceRNA” to regulate the expression of DVL3 by sponging miR-29a-3p.


2020 ◽  
Vol 68 (6) ◽  
pp. 1179-1185 ◽  
Author(s):  
Chengyan Xu ◽  
Zixia He ◽  
Chao Lin ◽  
Zhipeng Shen

Medulloblastoma (MB) is the most common malignant brain tumors among children. MiR-30b-5p is a potential tumor suppressor in a variety of human cancers. However, its expression and function in MB remain poorly understood. This study aimed to investigate the expression, role and regulatory mechanism of miR-30b-5p in MB. The expression of miR-30b-5p in MB tissues and cell lines was detected by real-time PCR. The effects of miR-30b-5p on cell proliferation and apoptosis were monitored by CCK-8 (Cell Counting Kit-8) assay, colony formation assay and flow cytometry, respectively. Bioinformatics database TargetScan predicted the target genes of miR-30b-5p. The interaction between miR-30b-5p and MYB proto-oncogene Like 2 (MYBL2) was determined by luciferase reporter gene assay. We demonstrated that the expression of miR-30b-5p was significantly downregulated in MB. Upregulated miR-30b-5p could inhibit the proliferation and induce apoptosis of MB.Moreover, overexpressed miR-30b-5p could increase the expression of BAX but decrease that of Bcl-2. Downregulated miR-30b-5p exerted the opposite effect. MYBL2 was proved to be the target gene of miR-30b-5p and was negatively regulated by miR-30b-5p. These results indicate that miR-30b-5p inhibits the progression of MB via targeting the expression of MYBL2.


2021 ◽  
Vol 35 ◽  
pp. 205873842110167
Author(s):  
Zhensen Zhu ◽  
Bo Chen ◽  
Liang Peng ◽  
Songying Gao ◽  
Jingdong Guo ◽  
...  

Activated M2 macrophages are involved in hypertrophic scar (HS) formation via manipulating the differentiation of fibroblasts to myofibroblasts having the proliferative capacity and biological function. However, the function of exosomes derived from M2 macrophages in HS formation is unclear. Thus, this study aims to investigate the role of exosomes derived by M2 in the formation of HS. To understand the effect of exosomes derived from M2 macrophages on formation of HS, M2 macrophages were co-cultured with human dermal fibroblast (HDF) cells. Cell Counting Kit-8 assay was performed to evaluate HDF proliferation. To evaluate the migration and invasion of HDFs, wound-healing and transwell invasion assays were performed, respectively. To investigate the interaction between LINC01605 and miR-493-3p, a dual-luciferase reporter gene assay was adopted; consequently, an interaction between miR-493-3p and AKT1 was detected. Our results demonstrated that exosomes derived from M2 macrophages promoted the proliferation, migration, and invasion of HDFs. Additionally, we found that long noncoding RNA LINC01605, enriched in exosomes derived from M2 macrophages, promoted fibrosis of HDFs and that GW4869, an inhibitor of exosomes, could revert this effect. Mechanistically, LINC01605 promoted fibrosis of HDFs by directly inhibiting the secretion of miR-493-3p, and miR-493-3p down-regulated the expression of AKT1. Exosomes derived from M2 macrophages promote the proliferation and migration of HDFs by transmitting LINC01605, which may activate the AKT signaling pathway by sponging miR-493-3p. Our results provide a novel approach and basis for further investigation of the function of M2 macrophages in HS formation.


2021 ◽  
Vol 20 (9) ◽  
pp. 1845-1853
Author(s):  
Qinfeng Han ◽  
Zhong Xu ◽  
Xiaolei Zhang ◽  
Kun Yang ◽  
Zhifei Sun ◽  
...  

Purpose: To investigate the effect of miR-486 on rats with acute myocardial infarction (AMI), and its mechanism of action.Methods: A rat model of AMI was established. They were randomly divided into 4 groups, namely, sham, model, agomiR-486 and antagomiR-486 groups, respectively. Rats in these different groups were treated with agomiR-21 (5 μL, 40 nmol/mL), antagomiR-21 (5 μL, 40 nmol/mL) or agomiR-NC (5 μL, 40 nmol/mL), respectively. Then, key miRNAs were sorted out using gene-chip assay and verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. Luciferase reporter gene assay was conducted to determine the interaction between miR-486 and gene of PTEN. After intraperitoneal injection of agomiR-486 and antagomiR-486, hemodynamics was measured to determine the effect of miR-486 on myocardial function of the rats. The effect of miR-486 expression level on the expression of myocardial enzymes in serum, the morphology of myocardial tissues, and the apoptosis of myocardial tissues in rats, were investigated. Additionally, the effect of miR-486 expression level on PTEN/AKT signaling pathway in the rats was determined by Western blotting.Results: The results of gene-chip and qRT-PCR assays revealed that there were 8 differentially expressed genes in rat myocardial tissues in the model group when compared with the sham group. MiR-486 improved the cardiac function of rats and the morphology of myocardial tissues, but reduced AMI-induced apoptosis of myocardial cells and the expression of myocardial enzymes (markers of myocardial injury) in a dose-dependent manner (p < 0.05). The results of luciferase reporter gene assay showed that PTEN was a direct target of miR-486. In rat models of AMI, a raised expression of miR-486 remarkably suppressed the protein expression level of PTEN and up-regulated that of p-AKT/AKT (p < 0.05).Conclusion: MiR-486 protects against AMI in rats probably by targeting PTEN and activating the AKT signaling pathway. The results of the current study may provide new insights for the treatment of AMI.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chuanliang Liu ◽  
Jieqiong Zhang ◽  
Xuejie Lun ◽  
Lei Li

Objective. To explore the effect and related mechanism of LncRNA PVT1 on hypoxia-induced cardiomyocyte injury. Methods. PVT1RNA and miR-214-3p levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell vitality and apoptosis were, respectively, evaluated by Cell Counting Kit-8 (CCK-8) and flow cytometry analysis. Starbase and Dual luciferase reporter (DLR) gene assay was employed to validate the interaction between miR-214-3p and PVT1. Results. PVT1 was statistically upregulated, and miR-214-3p was statistically downregulated in hypoxia-induced H9c2 cells. The survival rate of H9c2 cells induced by hypoxia decreased statistically, while the apoptosis rate increased statistically ( P < 0.05 ). PVT1 knockdown upregulated the hypoxia-induced H9c2 cell viability and inhibited apoptosis. DLR assay verified the targeting relationship between PVT1 and miR-214-3p. In addition, miR-214-3p inhibitors reversed the viability of H9c2 cells with PVT1 knockout and promoted apoptosis. Conclusion. Silencing PVT1 can enhance the hypoxia-induced H9c2 cell viability and inhibit apoptosis, providing a potential target for the treatment of cardiovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document