scholarly journals Lasia spinosa Chemical Composition and Therapeutic Potential: A Literature-Based Review

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Rajib Hossain ◽  
Cristina Quispe ◽  
Jesús Herrera-Bravo ◽  
Md. Shahazul Islam ◽  
Chandan Sarkar ◽  
...  

Lasia spinosa (L.) is used ethnobotanically for the treatment of various diseases, including rheumatoid arthritis, inflammation of the lungs, bleeding cough, hemorrhoids, intestinal diseases, stomach pain, and uterine cancer. This review is aimed at summarizing phytochemistry and pharmacological data with their molecular mechanisms of action. A search was performed in databases such as PubMed, Science Direct, and Google Scholar using the keywords: “Lasia spinosa,” then combined with “ethnopharmacological use,” “phytochemistry,” and “pharmacological activity.” This updated review included studies with in vitro, ex vivo, and in vivo experiments with compounds of known concentration and highlighted pharmacological mechanisms. The research results showed that L. spinosa contains many important nutritional and phytochemical components such as alkanes, aldehydes, alkaloids, carotenoids, flavonoids, fatty acids, ketones, lignans, phenolics, terpenoids, steroids, and volatile oil with excellent bioactivity. The importance of this review lies in the fact that scientific pharmacological evidence supports the fact that the plant has antioxidant, anti-inflammatory, antimicrobial, cytotoxic, antidiarrheal, antihelminthic, antidiabetic, antihyperlipidemic, and antinociceptive effects, while protecting the gastrointestinal system and reproductive. Regarding future toxicological and safety data, more research is needed, including studies on human subjects. In light of these data, L. spinosa can be considered a medicinal plant with effective bioactives for the adjuvant treatment of various diseases in humans.

Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 431 ◽  
Author(s):  
Rosa Vitale ◽  
Enrico D'Aniello ◽  
Stefania Gorbi ◽  
Andrea Martella ◽  
Cristoforo Silvestri ◽  
...  

Although the chemical warfare between invasive and native species has become a central problem in invasion biology, the molecular mechanisms by which bioactive metabolites from invasive pests influence local communities remain poorly characterized. This study demonstrates that the alkaloid caulerpin (CAU)—a bioactive component of the green alga Caulerpa cylindracea that has invaded the entire Mediterranean basin—is an agonist of peroxisome proliferator-activated receptors (PPARs). Our interdisciplinary study started with the in silico prediction of the ligand-protein interaction, which was then validated by in vivo, ex vivo and in vitro assays. On the basis of these results, we candidate CAU as a causal factor of the metabolic and behavioural disorders observed in Diplodus sargus, a native edible fish of high ecological and commercial relevance, feeding on C. cylindracea. Moreover, given the considerable interest in PPAR activators for the treatment of relevant human diseases, our findings are also discussed in terms of a possible nutraceutical/pharmacological valorisation of the invasive algal biomasses, supporting an innovative strategy for conserving biodiversity as an alternative to unrealistic campaigns for the eradication of invasive pests.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Jianan Zhang ◽  
Morgan E. Walker ◽  
Katherine Z. Sanidad ◽  
Hongna Zhang ◽  
Yanshan Liang ◽  
...  

AbstractEmerging research supports that triclosan (TCS), an antimicrobial agent found in thousands of consumer products, exacerbates colitis and colitis-associated colorectal tumorigenesis in animal models. While the intestinal toxicities of TCS require the presence of gut microbiota, the molecular mechanisms involved have not been defined. Here we show that intestinal commensal microbes mediate metabolic activation of TCS in the colon and drive its gut toxicology. Using a range of in vitro, ex vivo, and in vivo approaches, we identify specific microbial β-glucuronidase (GUS) enzymes involved and pinpoint molecular motifs required to metabolically activate TCS in the gut. Finally, we show that targeted inhibition of bacterial GUS enzymes abolishes the colitis-promoting effects of TCS, supporting an essential role of specific microbial proteins in TCS toxicity. Together, our results define a mechanism by which intestinal microbes contribute to the metabolic activation and gut toxicity of TCS, and highlight the importance of considering the contributions of the gut microbiota in evaluating the toxic potential of environmental chemicals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuan Cai ◽  
Kewa Gao ◽  
Bi Peng ◽  
Zhijie Xu ◽  
Jinwu Peng ◽  
...  

Alantolactone (ALT) is a natural compound extracted from Chinese traditional medicine Inula helenium L. with therapeutic potential in the treatment of various diseases. Recently, in vitro and in vivo studies have indicated cytotoxic effects of ALT on various cancers, including liver cancer, colorectal cancer, breast cancer, etc. The inhibitory effects of ALT depend on several cancer-associated signaling pathways and abnormal regulatory factors in cancer cells. Moreover, emerging studies have reported several promising strategies to enhance the oral bioavailability of ALT, such as combining ALT with other herbs and using ALT-entrapped nanostructured carriers. In this review, studies on the anti-tumor roles of ALT are mainly summarized, and the underlying molecular mechanisms of ALT exerting anticancer effects on cells investigated in animal-based studies are also discussed.


Blood ◽  
2002 ◽  
Vol 99 (12) ◽  
pp. 4486-4493 ◽  
Author(s):  
Gregor Theilmeier ◽  
Carine Michiels ◽  
Erik Spaepen ◽  
Ingrid Vreys ◽  
Désiré Collen ◽  
...  

Platelets are thought to play a causal role during atherogenesis. Platelet-endothelial interactions in vivo and their molecular mechanisms under shear are, however, incompletely characterized. Here, an in vivo platelet homing assay was used in hypercholesterolemic rabbits to track platelet adhesion to plaque predilection sites. The role of platelet versus aortic endothelial cell (EC) activation was studied in an ex vivo flow chamber. Pathways of human platelet immobilization were detailed during in vitro perfusion studies. In rabbits, a 0.125% cholesterol diet induced no lesions within 3 months, but fatty streaks were found after 12 months. ECs at segmental arteries of 3- month rabbits expressed more von Willebrand factor (VWF) and recruited 5-fold more platelets than controls (P < .05, n = 5 and 4, respectively). The 3-month ostia had an increased likelihood to recruit platelets compared to control ostia (56% versus 18%, P < .0001, n = 89 and 63, respectively). Ex vivo, the adhesion of 3-month platelets to 3-month aortas was 8.4-fold increased compared to control studies (P < .01, n = 7 and 5, respectively). In vitro, endothelial VWF–platelet glycoprotein (GP) Ib and platelet P-selectin– endothelial P-selectin glycoprotein ligand 1 interactions accounted in combination for 83% of translocation and 90% of adhesion (P < .01, n = 4) of activated human platelets to activated human ECs. Platelet tethering was mainly mediated by platelet GPIbα, whereas platelet GPIIb/IIIa contributed 20% to arrest (P < .05). In conclusion, hypercholesterolemia primes platelets for recruitment via VWF, GPIbα, and P-selectin to lesion-prone sites, before lesions are detectable.


2010 ◽  
Vol 103 (11) ◽  
pp. 1545-1557 ◽  
Author(s):  
Jenny Epstein ◽  
Ian R. Sanderson ◽  
Thomas T. MacDonald

Curcumin is the active ingredient of turmeric. It is widely used as a kitchen spice and food colorant throughout India, Asia and the Western world. Curcumin is a major constituent of curry powder, to which it imparts its characteristic yellow colour. For over 4000 years, curcumin has been used in traditional Asian and African medicine to treat a wide variety of ailments. There is a strong current public interest in naturally occurring plant-based remedies and dietary factors related to health and disease. Curcumin is non-toxic to human subjects at high doses. It is a complex molecule with multiple biological targets and different cellular effects. Recently, its molecular mechanisms of action have been extensively investigated. It has anti-inflammatory, antioxidant and anti-cancer properties. Under some circumstances its effects can be contradictory, with uncertain implications for human treatment. While more studies are warranted to further understand these contradictions, curcumin holds promise as a disease-modifying and chemopreventive agent. We review the evidence for the therapeutic potential of curcumin fromin vitrostudies, animal models and human clinical trials.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Shihua Wu ◽  
Feng Liu ◽  
Liming Xie ◽  
Yaling Peng ◽  
Xiaoyuan Lv ◽  
...  

Understanding the molecular mechanisms underlying gastric cancer progression contributes to the development of novel targeted therapies. In this study, we found that the expression levels of miR-125b were strongly downregulated in gastric cancer and associated with clinical stage and the presence of lymph node metastases. Additionally, miR-125b could independently predict OS and DFS in gastric cancer. We further found that upregulation of miR-125b inhibited the proliferation and metastasis of gastric cancer cells in vitro and in vivo. miR-125b elicits these responses by directly targeting MCL1 (myeloid cell leukemia 1), which results in a marked reduction in MCL1 expression. Transfection of miR-125b sensitizes gastric cancer cells to 5-FU-induced apoptosis. By understanding the function and molecular mechanisms of miR-125b in gastric cancer, we may learn that miR-125b has the therapeutic potential to suppress gastric cancer progression and increase drug sensitivity to gastric cancer.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1366-1366
Author(s):  
Lisa M. Giammona ◽  
Eleftherios Papoutsakis ◽  
William M. Miller

Abstract Megakaryocyte (Mk) maturation includes the development of polyploid cells via endomitosis. In vitro models of Mk differentiation can be used to gain a better understanding of the molecular mechanisms controlling this process. However, it is challenging to achieve ploidy levels in cultured human cells that are as high as those observed in vivo. Others have recently reported the use of chemical inhibitors to increase Mk ploidy (Lannutti et al., Blood 105:3875, 2005). Here, we show that nicotinamide (NIC), a form of vitamin B3, enhances the normal process of Mk polyploidization and leads to both a greater fraction of high ploidy cells and a greater degree of polyploidization. Human mobilized peripheral blood CD34+ cells were cultured in serum-free medium supplemented with thrombopoietin (TPO) to induce Mk differentiation. Beginning on day 5 of culture, cells were treated with nicotinamide (3 and 6.25 mM) and monitored for DNA content, growth, apoptosis, and surface marker expression. NIC treatment resulted in a greater fraction of Mks with high ploidy (DNA content greater than or equal to 8N). The ploidy of NIC treated cells continued to increase over the duration of the 13-day culture, whereas the ploidy of untreated cells peaked at day 9. On day 13 (8 days of NIC exposure), the percentages of high ploidy Mks for the untreated, 3 mM NIC, and 6.25 mM NIC conditions were 23%, 48%, and 63%, respectively. Furthermore, cells treated with NIC reached ploidy levels of 64N and 32N for 6.25 and 3 mM NIC, respectively, compared to 16N for untreated cells. NIC-treated cells also displayed dramatic differences in morphology - characterized by an increase in cell size, the presence of a more highly lobated nucleus, and an increased frequency of proplatelet-forming cells. Nicotinamide is known to inhibit poly(ADP-ribose) polymerase (PARP) and Sir2, which are both NAD+ dependent enzymes. Preliminary experiments show that PARP activity is low in cultured Mks and is not affected by addition of 6.25 mM NIC. Continued exposure (beginning at day 5) to the PARP inhibitors (and nicotinamide analogs) 3-aminobenzamide (3-AB) and benzamide at concentrations of 1, 3, and 6.25 mM was toxic to cells in a dose dependent manner. Interestingly, high doses of NIC (25 and 50 mM) were also toxic to cells. Remarkably, while Mk polyploidization and apoptosis are typically correlated, the increase in DNA content observed for NIC-treated cells occurred without significantly affecting the percentage of apoptotic Mks (assessed by Annexin V staining). These data suggest that it may be possible to partially decouple Mk apoptosis and polyploidization. Furthermore, while 6.25 mM NIC inhibited cell proliferation by ~35%, total expansion of cells cultured with 3 mM NIC was similar to that of untreated cells. This, combined with similar Mk commitment, as defined by a similar percentage of CD41+ cells, resulted in a greater overall number of high ploidy Mks in cultures treated with NIC. Since there is a direct correlation between Mk DNA content and platelet production (Mattia et al., Blood 99:888, 2002), these results suggest a possible therapeutic benefit of NIC for the management of thrombocytopenia. Similarly, NIC could also be used as an additive to ex vivo Mk cultures destined for transplantation. Figure Figure


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2234
Author(s):  
Anbharasi Lakshmanan ◽  
Roman A. Akasov ◽  
Natalya V. Sholina ◽  
Polina A. Demina ◽  
Alla N. Generalova ◽  
...  

Formulation of promising anticancer herbal drug curcumin as a nanoscale-sized curcumin (nanocurcumin) improved its delivery to cells and organisms both in vitro and in vivo. We report on coupling nanocurcumin with upconversion nanoparticles (UCNPs) using Poly (lactic-co-glycolic Acid) (PLGA) to endow visualisation in the near-infrared transparency window. Nanocurcumin was prepared by solvent-antisolvent method. NaYF4:Yb,Er (UCNP1) and NaYF4:Yb,Tm (UCNP2) nanoparticles were synthesised by reverse microemulsion method and then functionalized it with PLGA to form UCNP-PLGA nanocarrier followed up by loading with the solvent-antisolvent process synthesized herbal nanocurcumin. The UCNP samples were extensively characterised with XRD, Raman, FTIR, DSC, TGA, UV-VIS-NIR spectrophotometer, Upconversion spectrofluorometer, HRSEM, EDAX and Zeta Potential analyses. UCNP1-PLGA-nanocurcumin exhibited emission at 520, 540, 660 nm and UCNP2-PLGA-nanocurmin showed emission at 480 and 800 nm spectral bands. UCNP-PLGA-nanocurcumin incubated with rat glioblastoma cells demonstrated moderate cytotoxicity, 60–80% cell viability at 0.12–0.02 mg/mL marginally suitable for therapeutic applications. The cytotoxicity of UCNPs evaluated in tumour spheroids models confirmed UCNP-PLGA-nanocurcumin therapeutic potential. As-synthesised curcumin-loaded nanocomplexes were administered in tumour-bearing laboratory animals (Lewis lung cancer model) and showed adequate contrast to enable in vivo and ex vivo study of UCNP-PLGA-nanocurcumin bio distribution in organs, with dominant distribution in the liver and lungs. Our studies demonstrate promise of nanocurcumin-loaded upconversion nanoparticles for theranostics applications.


Sign in / Sign up

Export Citation Format

Share Document