scholarly journals Intelligent Sports Video Classification Based on Deep Neural Network (DNN) Algorithm and Transfer Learning

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaoping Guo

Traditional text annotation-based video retrieval is done by manually labeling videos with text, which is inefficient and highly subjective and generally cannot accurately describe the meaning of videos. Traditional content-based video retrieval uses convolutional neural networks to extract the underlying feature information of images to build indexes and achieves similarity retrieval of video feature vectors according to certain similarity measure algorithms. In this paper, by studying the characteristics of sports videos, we propose the histogram difference method based on using transfer learning and the four-step method based on block matching for mutation detection and fading detection of video shots, respectively. By adaptive thresholding, regions with large frame difference changes are marked as candidate regions for shots, and then the shot boundaries are determined by mutation detection algorithm. Combined with the characteristics of sports video, this paper proposes a key frame extraction method based on clustering and optical flow analysis, and experimental comparison with the traditional clustering method. In addition, this paper proposes a key frame extraction algorithm based on clustering and optical flow analysis for key frame extraction of sports video. The algorithm effectively removes the redundant frames, and the extracted key frames are more representative. Through extensive experiments, the keyword fuzzy finding algorithm based on improved deep neural network and ontology semantic expansion proposed in this paper shows a more desirable retrieval performance, and it is feasible to use this method for video underlying feature extraction, annotation, and keyword finding, and one of the outstanding features of the algorithm is that it can quickly and effectively retrieve the desired video in a large number of Internet video resources, reducing the false detection rate and leakage rate while improving the fidelity, which basically meets people’s daily needs.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Chen Zhang ◽  
Bin Hu ◽  
Yucong Suo ◽  
Zhiqiang Zou ◽  
Yimu Ji

In this paper, we study the challenge of image-to-video retrieval, which uses the query image to search relevant frames from a large collection of videos. A novel framework based on convolutional neural networks (CNNs) is proposed to perform large-scale video retrieval with low storage cost and high search efficiency. Our framework consists of the key-frame extraction algorithm and the feature aggregation strategy. Specifically, the key-frame extraction algorithm takes advantage of the clustering idea so that redundant information is removed in video data and storage cost is greatly reduced. The feature aggregation strategy adopts average pooling to encode deep local convolutional features followed by coarse-to-fine retrieval, which allows rapid retrieval in the large-scale video database. The results from extensive experiments on two publicly available datasets demonstrate that the proposed method achieves superior efficiency as well as accuracy over other state-of-the-art visual search methods.


2020 ◽  
Vol 152 ◽  
pp. S146-S147
Author(s):  
J. Perez-Alija ◽  
P. Gallego ◽  
M. Lizondo ◽  
J. Nuria ◽  
A. Latorre-Musoll ◽  
...  

2021 ◽  
Vol 10 (9) ◽  
pp. 25394-25398
Author(s):  
Chitra Desai

Deep learning models have demonstrated improved efficacy in image classification since the ImageNet Large Scale Visual Recognition Challenge started since 2010. Classification of images has further augmented in the field of computer vision with the dawn of transfer learning. To train a model on huge dataset demands huge computational resources and add a lot of cost to learning. Transfer learning allows to reduce on cost of learning and also help avoid reinventing the wheel. There are several pretrained models like VGG16, VGG19, ResNet50, Inceptionv3, EfficientNet etc which are widely used.   This paper demonstrates image classification using pretrained deep neural network model VGG16 which is trained on images from ImageNet dataset. After obtaining the convolutional base model, a new deep neural network model is built on top of it for image classification based on fully connected network. This classifier will use features extracted from the convolutional base model.


2011 ◽  
Vol 10 (03) ◽  
pp. 247-259 ◽  
Author(s):  
Dianting Liu ◽  
Mei-Ling Shyu ◽  
Chao Chen ◽  
Shu-Ching Chen

In consequence of the popularity of family video recorders and the surge of Web 2.0, increasing amounts of videos have made the management and integration of the information in videos an urgent and important issue in video retrieval. Key frames, as a high-quality summary of videos, play an important role in the areas of video browsing, searching, categorisation, and indexing. An effective set of key frames should include major objects and events of the video sequence, and should contain minimum content redundancies. In this paper, an innovative key frame extraction method is proposed to select representative key frames for a video. By analysing the differences between frames and utilising the clustering technique, a set of key frame candidates (KFCs) is first selected at the shot level, and then the information within a video shot and between video shots is used to filter the candidate set to generate the final set of key frames. Experimental results on the TRECVID 2007 video dataset have demonstrated the effectiveness of our proposed key frame extraction method in terms of the percentage of the extracted key frames and the retrieval precision.


Sign in / Sign up

Export Citation Format

Share Document