scholarly journals The Impact of Media Coverage and Curfew on the Outbreak of Coronavirus Disease 2019 Model: Stability and Bifurcation

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Afrah K. S. Al-Tameemi ◽  
Raid K. Naji

In this study, the spreading of the pandemic coronavirus disease (COVID-19) is formulated mathematically. The objective of this study is to stop or slow the spread of COVID-19. In fact, to stop the spread of COVID-19, the vaccine of the disease is needed. However, in the absence of the vaccine, people must have to obey curfew and social distancing and follow the media alert coverage rule. In order to maintain these alternative factors, we must obey the modeling rule. Therefore, the impact of curfew, media alert coverage, and social distance between the individuals on the outbreak of disease is considered. Five ordinary differential equations of the first-order are used to represent the model. The solution properties of the system are discussed. The equilibria and the basic reproduction number are computed. The local and global stabilities are studied. The occurrence of local bifurcation near the disease-free equilibrium point is investigated. Numerical simulation is carried out in applying the model to the sample of the Iraqi population through solving the model using the Runge–Kutta fourth-order method with the help of Matlab. It is observed that the complete application of the curfew and social distance makes the basic reproduction number less than one and hence prevents the outbreak of disease. However, increasing the media alert coverage does not prevent the outbreak of disease completely, instead of that it reduces the spread, which means the disease is under control, by reducing the basic reproduction number and making it an approachable one.

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Maoxing Liu ◽  
Yuting Chang ◽  
Lixia Zuo

An epidemic model with media is proposed to describe the spread of infectious diseases in a given region. A piecewise continuous transmission rate is introduced to describe that the media has its effect when the number of the infected exceeds a certain critical level. Furthermore, it is assumed that the impact of the media on the contact transmission is described by an exponential function. Stability analysis of the model shows that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than unity. On the other hand, when the basic reproduction number is greater than unity, a unique endemic equilibrium exists, which is also globally asymptotically stable. Our analysis implies that media coverage plays an important role in controlling the spread of the disease.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jianping Wang ◽  
Shujing Gao ◽  
Yueli Luo ◽  
Dehui Xie

We analyze the impact of seasonal activity of psyllid on the dynamics of Huanglongbing (HLB) infection. A new model about HLB transmission with Logistic growth in psyllid insect vectors and periodic coefficients has been investigated. It is shown that the global dynamics are determined by the basic reproduction numberR0which is defined through the spectral radius of a linear integral operator. IfR0< 1, then the disease-free periodic solution is globally asymptotically stable and ifR0> 1, then the disease persists. Numerical values of parameters of the model are evaluated taken from the literatures. Furthermore, numerical simulations support our analytical conclusions and the sensitive analysis on the basic reproduction number to the changes of average and amplitude values of the recruitment function of citrus are shown. Finally, some useful comments on controlling the transmission of HLB are given.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Yali Yang ◽  
Chenping Guo ◽  
Luju Liu ◽  
Tianhua Zhang ◽  
Weiping Liu

The statistical data of monthly pulmonary tuberculosis (TB) incidence cases from January 2004 to December 2012 show the seasonality fluctuations in Shaanxi of China. A seasonality TB epidemic model with periodic varying contact rate, reactivation rate, and disease-induced death rate is proposed to explore the impact of seasonality on the transmission dynamics of TB. Simulations show that the basic reproduction number of time-averaged autonomous systems may underestimate or overestimate infection risks in some cases, which may be up to the value of period. The basic reproduction number of the seasonality model is appropriately given, which determines the extinction and uniform persistence of TB disease. If it is less than one, then the disease-free equilibrium is globally asymptotically stable; if it is greater than one, the system at least has a positive periodic solution and the disease will persist. Moreover, numerical simulations demonstrate these theorem results.


2016 ◽  
Vol 10 (01) ◽  
pp. 1750003
Author(s):  
Maoxing Liu ◽  
Lixia Zuo

A three-dimensional compartmental model with media coverage is proposed to describe the real characteristics of its impact in the spread of infectious diseases in a given region. A piecewise continuous transmission rate is introduced to describe that media coverage exhibits its effect only when the number of the infected exceeds a certain critical level. Further, it is assumed that the impact of media coverage on the contact transmission is described by an exponential decreasing factor. Stability analysis of the model shows that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than unity. On the other hand, when the basic reproduction number is greater than unity and media coverage impact is sufficiently small, a unique endemic equilibrium exists, which is globally asymptotically stable.


Author(s):  
Temidayo Oluwafemi ◽  
Emmanuel Azuaba

Malaria continues to pose a major public health challenge, especially in developing countries, 219 million cases of malaria were estimated in 89 countries. In this paper, a mathematical model using non-linear differential equations is formulated to describe the impact of hygiene on Malaria transmission dynamics, the model is analyzed. The model is divided into seven compartments which includes five human compartments namely; Unhygienic susceptible human population, Hygienic Susceptible Human population, Unhygienic infected human population , hygienic infected human population and the Recovered Human population  and the mosquito population is subdivided into susceptible mosquitoes  and infected mosquitoes . The positivity of the solution shows that there exists a domain where the model is biologically meaningful and mathematically well-posed. The Disease-Free Equilibrium (DFE) point of the model is obtained, we compute the Basic Reproduction Number using the next generation method and established the condition for Local stability of the disease-free equilibrium, and we thereafter obtained the global stability of the disease-free equilibrium by constructing the Lyapunov function of the model system. Also, sensitivity analysis of the model system was carried out to identify the influence of the parameters on the Basic Reproduction Number, the result shows that the natural death rate of the mosquitoes is most sensitive to the basic reproduction number.


2021 ◽  
Vol 53 (2) ◽  
pp. 243-260
Author(s):  
Agatha Abokwara ◽  
Chinwendu Emilian Madubueze

Schistosomiasis is a neglected tropical disease affecting communities surrounded by water bodies where fishing activities take place or people go to swim, wash and cultivate crops. It poses a great risk to the health and economic life of inhabitants of the area. This study was carried out to evaluate the impact of public health education and snail control measures on the incidence of schistosomiasis. A model was developed with attention given to the snail and human populations that are the hosts of the cercariae and miracidia respectively. The existence and stability of disease-free and endemic equilibrium states were established. The disease-free and endemic equilibrium states were shown to be locally asymptotically stable whenever the basic reproduction number was less than unity. Numerical simulations of the model were carried out to evaluate the impact of interventions (public health education and snail control measures) on schistosomiasis transmission. It was observed that the implementation of low coverage snail control with highly efficacious molluscicide and massive public health education will make the basic reproduction number smaller than unity, which implies the eradication of schistosomiasis in the population.


2021 ◽  
Vol 24 (11) ◽  
pp. 1949-1953
Author(s):  
AO Sangotola

A malaria model with isolated drug resistant population after the first line of treatment is presented using six systems of first order nonlinear differential equations. The disease free equilibrium point and the basic reproduction number are determined. Local stability of the disease free equilibrium is determined and the conditions for the existence of endemic equilibrium. Bifurcation analysis reveals the existence of backward bifurcation. Sensitivity analysis is used to determine the impact of the model parameter on the basic reproduction number. Early detection and using correct dosage will go a long way to prevent drug resistance. Keywords: Malaria, Bifurcation, Basic reproduction number, Stability, Equilibrium.


Author(s):  
Rodah Jerubet ◽  
George Kimathi ◽  
Mary Wanaina

Mycobacterium tuberculosis is the causative agent of Tuberculosis in humans [1,2]. A mathematical model that explains the transmission of Tuberculosis is developed. The model consists of four compartments; the susceptible humans, the infectious humans, the latently infected humans, and the recovered humans. We conducted an analysis of the disease-free equilibrium and endemic equilibrium points. We also computed the basic reproduction number using the next generation matrix approach. The disease-free equilibrium was found to be asymptotically stable if the reproduction number was less than one. The most sensitive parameter to the basic reproduction number was also determined using sensitivity analysis. Recruitment and contact rate are the most sensitive parameter that contributes to the basic reproduction number. Ordinary Differential Equations is used in the for­mulation of the model equations. The Tuberculosis model is analyzed in order to give a proper account of the impact of its transmission dynamics and the effect of the latent stage in TB transmission. The steady state's solution of the model is investigated. The findings showed that as more people come into contact with infectious individuals, the spread of TB would increase. The latent rate of infection below a critical value makes TB infection to persist.   However, the recovery rate of infectious individuals is an indication that the spread of the disease will reduce with time which could help curb TB transmission. 


2019 ◽  
Vol 12 (05) ◽  
pp. 1950060
Author(s):  
A. Oumar Bah ◽  
M. Lam ◽  
A. Bah ◽  
S. Bowong

This paper has been motivated by the following biological question: how influential are desert aerosols in the transmission of meningitidis serogroup A (MenA)? A mathematical model for the dynamical transmission of MenA is considered, with the aim of investigating the impact of desert aerosols. Sensitivity analysis of the model has been performed in order to determine the impact of related parameters on meningitis outbreak. We derive the basic reproduction number [Formula: see text]. We prove that there exists a threshold parameter [Formula: see text] such that when [Formula: see text], the disease-free equilibrium is globally asymptotically stable (GAS). However, when [Formula: see text], the model exhibits the phenomenon of backward bifurcation. At the endemic level, we show that the number of infectious individuals in the presence of desert aerosols is larger than the corresponding number without the presence of desert aerosols. In conjunction with the inequality [Formula: see text] where [Formula: see text] is the basic reproduction number without desert aerosols, we found that the ingestion of aerosols by carriers will increase the endemic level, and the severity of the outbreak. This suggests that the control of MenA passes through a combination of a large coverage vaccination of young susceptible individuals and the production of a vaccine with a high level of efficacy as well as respecting the hygienic rules to avoid the inhalation of desert aerosols. Theoretical results are supported by numerical simulations.


Author(s):  
Mojeeb Al-Rahman EL-Nor Osman ◽  
Appiagyei Ebenezer ◽  
Isaac Kwasi Adu

In this paper, an Immunity-Susceptible-Exposed-Infectious-Recovery (MSEIR) mathematical model was used to study the dynamics of measles transmission. We discussed that there exist a disease-free and an endemic equilibria. We also discussed the stability of both disease-free and endemic equilibria.  The basic reproduction number  is obtained. If , then the measles will spread and persist in the population. If , then the disease will die out.  The disease was locally asymptotically stable if  and unstable if  . ALSO, WE PROVED THE GLOBAL STABILITY FOR THE DISEASE-FREE EQUILIBRIUM USING LASSALLE'S INVARIANCE PRINCIPLE OF Lyaponuv function. Furthermore, the endemic equilibrium was locally asymptotically stable if , under certain conditions. Numerical simulations were conducted to confirm our analytic results. Our findings were that, increasing the birth rate of humans, decreasing the progression rate, increasing the recovery rate and reducing the infectious rate can be useful in controlling and combating the measles.


Sign in / Sign up

Export Citation Format

Share Document