scholarly journals Impact of Hygiene on Malaria Transmission Dynamics: A Mathematical Model

Author(s):  
Temidayo Oluwafemi ◽  
Emmanuel Azuaba

Malaria continues to pose a major public health challenge, especially in developing countries, 219 million cases of malaria were estimated in 89 countries. In this paper, a mathematical model using non-linear differential equations is formulated to describe the impact of hygiene on Malaria transmission dynamics, the model is analyzed. The model is divided into seven compartments which includes five human compartments namely; Unhygienic susceptible human population, Hygienic Susceptible Human population, Unhygienic infected human population , hygienic infected human population and the Recovered Human population  and the mosquito population is subdivided into susceptible mosquitoes  and infected mosquitoes . The positivity of the solution shows that there exists a domain where the model is biologically meaningful and mathematically well-posed. The Disease-Free Equilibrium (DFE) point of the model is obtained, we compute the Basic Reproduction Number using the next generation method and established the condition for Local stability of the disease-free equilibrium, and we thereafter obtained the global stability of the disease-free equilibrium by constructing the Lyapunov function of the model system. Also, sensitivity analysis of the model system was carried out to identify the influence of the parameters on the Basic Reproduction Number, the result shows that the natural death rate of the mosquitoes is most sensitive to the basic reproduction number.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Yali Yang ◽  
Chenping Guo ◽  
Luju Liu ◽  
Tianhua Zhang ◽  
Weiping Liu

The statistical data of monthly pulmonary tuberculosis (TB) incidence cases from January 2004 to December 2012 show the seasonality fluctuations in Shaanxi of China. A seasonality TB epidemic model with periodic varying contact rate, reactivation rate, and disease-induced death rate is proposed to explore the impact of seasonality on the transmission dynamics of TB. Simulations show that the basic reproduction number of time-averaged autonomous systems may underestimate or overestimate infection risks in some cases, which may be up to the value of period. The basic reproduction number of the seasonality model is appropriately given, which determines the extinction and uniform persistence of TB disease. If it is less than one, then the disease-free equilibrium is globally asymptotically stable; if it is greater than one, the system at least has a positive periodic solution and the disease will persist. Moreover, numerical simulations demonstrate these theorem results.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Victor Yiga ◽  
Hasifa Nampala ◽  
Julius Tumwiine

Malaria is one of the world’s most prevalent epidemics. Current control and eradication efforts are being frustrated by rapid changes in climatic factors such as temperature and rainfall. This study is aimed at assessing the impact of temperature and rainfall abundance on the intensity of malaria transmission. A human host-mosquito vector deterministic model which incorporates temperature and rainfall dependent parameters is formulated. The model is analysed for steady states and their stability. The basic reproduction number is obtained using the next-generation method. It was established that the mosquito population depends on a threshold value θ , defined as the number of mosquitoes produced by a female Anopheles mosquito throughout its lifetime, which is governed by temperature and rainfall. The conditions for the stability of the equilibrium points are investigated, and it is shown that there exists a unique endemic equilibrium which is locally and globally asymptotically stable whenever the basic reproduction number exceeds unity. Numerical simulations show that both temperature and rainfall affect the transmission dynamics of malaria; however, temperature has more influence.


Author(s):  
Rodah Jerubet ◽  
George Kimathi ◽  
Mary Wanaina

Mycobacterium tuberculosis is the causative agent of Tuberculosis in humans [1,2]. A mathematical model that explains the transmission of Tuberculosis is developed. The model consists of four compartments; the susceptible humans, the infectious humans, the latently infected humans, and the recovered humans. We conducted an analysis of the disease-free equilibrium and endemic equilibrium points. We also computed the basic reproduction number using the next generation matrix approach. The disease-free equilibrium was found to be asymptotically stable if the reproduction number was less than one. The most sensitive parameter to the basic reproduction number was also determined using sensitivity analysis. Recruitment and contact rate are the most sensitive parameter that contributes to the basic reproduction number. Ordinary Differential Equations is used in the for­mulation of the model equations. The Tuberculosis model is analyzed in order to give a proper account of the impact of its transmission dynamics and the effect of the latent stage in TB transmission. The steady state's solution of the model is investigated. The findings showed that as more people come into contact with infectious individuals, the spread of TB would increase. The latent rate of infection below a critical value makes TB infection to persist.   However, the recovery rate of infectious individuals is an indication that the spread of the disease will reduce with time which could help curb TB transmission. 


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jianping Wang ◽  
Shujing Gao ◽  
Yueli Luo ◽  
Dehui Xie

We analyze the impact of seasonal activity of psyllid on the dynamics of Huanglongbing (HLB) infection. A new model about HLB transmission with Logistic growth in psyllid insect vectors and periodic coefficients has been investigated. It is shown that the global dynamics are determined by the basic reproduction numberR0which is defined through the spectral radius of a linear integral operator. IfR0< 1, then the disease-free periodic solution is globally asymptotically stable and ifR0> 1, then the disease persists. Numerical values of parameters of the model are evaluated taken from the literatures. Furthermore, numerical simulations support our analytical conclusions and the sensitive analysis on the basic reproduction number to the changes of average and amplitude values of the recruitment function of citrus are shown. Finally, some useful comments on controlling the transmission of HLB are given.


Author(s):  
Mojeeb Al-Rahman EL-Nor Osman ◽  
Appiagyei Ebenezer ◽  
Isaac Kwasi Adu

In this paper, an Immunity-Susceptible-Exposed-Infectious-Recovery (MSEIR) mathematical model was used to study the dynamics of measles transmission. We discussed that there exist a disease-free and an endemic equilibria. We also discussed the stability of both disease-free and endemic equilibria.  The basic reproduction number  is obtained. If , then the measles will spread and persist in the population. If , then the disease will die out.  The disease was locally asymptotically stable if  and unstable if  . ALSO, WE PROVED THE GLOBAL STABILITY FOR THE DISEASE-FREE EQUILIBRIUM USING LASSALLE'S INVARIANCE PRINCIPLE OF Lyaponuv function. Furthermore, the endemic equilibrium was locally asymptotically stable if , under certain conditions. Numerical simulations were conducted to confirm our analytic results. Our findings were that, increasing the birth rate of humans, decreasing the progression rate, increasing the recovery rate and reducing the infectious rate can be useful in controlling and combating the measles.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Pakwan Riyapan ◽  
Sherif Eneye Shuaib ◽  
Arthit Intarasit

In this study, we propose a new mathematical model and analyze it to understand the transmission dynamics of the COVID-19 pandemic in Bangkok, Thailand. It is divided into seven compartmental classes, namely, susceptible S , exposed E , symptomatically infected I s , asymptomatically infected I a , quarantined Q , recovered R , and death D , respectively. The next-generation matrix approach was used to compute the basic reproduction number denoted as R cvd 19 of the proposed model. The results show that the disease-free equilibrium is globally asymptotically stable if R cvd 19 < 1 . On the other hand, the global asymptotic stability of the endemic equilibrium occurs if R cvd 19 > 1 . The mathematical analysis of the model is supported using numerical simulations. Moreover, the model’s analysis and numerical results prove that the consistent use of face masks would go on a long way in reducing the COVID-19 pandemic.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Afrah K. S. Al-Tameemi ◽  
Raid K. Naji

In this study, the spreading of the pandemic coronavirus disease (COVID-19) is formulated mathematically. The objective of this study is to stop or slow the spread of COVID-19. In fact, to stop the spread of COVID-19, the vaccine of the disease is needed. However, in the absence of the vaccine, people must have to obey curfew and social distancing and follow the media alert coverage rule. In order to maintain these alternative factors, we must obey the modeling rule. Therefore, the impact of curfew, media alert coverage, and social distance between the individuals on the outbreak of disease is considered. Five ordinary differential equations of the first-order are used to represent the model. The solution properties of the system are discussed. The equilibria and the basic reproduction number are computed. The local and global stabilities are studied. The occurrence of local bifurcation near the disease-free equilibrium point is investigated. Numerical simulation is carried out in applying the model to the sample of the Iraqi population through solving the model using the Runge–Kutta fourth-order method with the help of Matlab. It is observed that the complete application of the curfew and social distance makes the basic reproduction number less than one and hence prevents the outbreak of disease. However, increasing the media alert coverage does not prevent the outbreak of disease completely, instead of that it reduces the spread, which means the disease is under control, by reducing the basic reproduction number and making it an approachable one.


2020 ◽  
Author(s):  
Tamer Sanlidag ◽  
Nazife Sultanoglu ◽  
Bilgen Kaymakamzade ◽  
Evren Hincal ◽  
Murat Sayan ◽  
...  

Abstract The present study studied the dynamics of SARS-CoV-2 in Northern-Cyprus (NC) by using real data and a designed mathematical model. The model consisted of two equilibrium points, which were disease-free and epidemic. The stability of the equilibrium points was determined by the magnitude of the basic reproduction number (𝑹𝟎). If 𝑹𝟎 < 1, the disease eventually disappears, if 𝑹𝟎 ≥ 1, the presence of an epidemic is stated. 𝑹𝟎 has been calculated patient zero, with a range of 2.38 to 0.65. Currently, the 𝑹𝟎 for NC was found to be 0.65, indicating that NC is free from the SARS-CoV-2 epidemic.


2020 ◽  
Author(s):  
Tamer Sanlidag ◽  
Nazife Sultanoglu ◽  
Bilgen Kaymakamzade ◽  
Evren Hincal ◽  
Murat Sayan ◽  
...  

Abstract The present study studied the dynamics of SARS-CoV-2 in Northern-Cyprus (NC) by using real data and a designed mathematical model. The model consisted of two equilibrium points, which were disease-free and epidemic. The stability of the equilibrium points was determined by the magnitude of the basic reproduction number (𝑹𝟎). If 𝑹𝟎 < 1, the disease eventually disappears, if 𝑹𝟎 ≥ 1, the presence of an epidemic is stated. 𝑹𝟎 has been calculated patient zero, with a range of 2.38 to 0.65. Currently, the 𝑹𝟎 for NC was found to be 0.65, indicating that NC is free from the SARS-CoV-2epidemic.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hai-Feng Huo ◽  
Guang-Ming Qiu

A more realistic mathematical model of malaria is introduced, in which we not only consider the recovered humans return to the susceptible class, but also consider the recovered humans return to the infectious class. The basic reproduction numberR0is calculated by next generation matrix method. It is shown that the disease-free equilibrium is globally asymptotically stable ifR0≤1, and the system is uniformly persistence ifR0>1. Some numerical simulations are also given to explain our analytical results. Our results show that to control and eradicate the malaria, it is very necessary for the government to decrease the relapse rate and increase the recovery rate.


Sign in / Sign up

Export Citation Format

Share Document