scholarly journals Proteogenomic Analysis Reveals Proteins Involved in the First Step of Adipogenesis in Human Adipose-Derived Stem Cells

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bernardo Bonilauri ◽  
Amanda C. Camillo-Andrade ◽  
Marlon D. M. Santos ◽  
Juliana de S. da G. Fischer ◽  
Paulo C. Carvalho ◽  
...  

Background. Obesity is characterized as a disease that directly affects the whole-body metabolism and is associated with excess fat mass and several related comorbidities. Dynamics of adipocyte hypertrophy and hyperplasia play an important role in health and disease, especially in obesity. Human adipose-derived stem cells (hASC) represent an important source for understanding the entire adipogenic differentiation process. However, little is known about the triggering step of adipogenesis in hASC. Here, we performed a proteogenomic approach for understanding the protein abundance alterations during the initiation of the adipogenic differentiation process. Methods. hASC were isolated from adipose tissue of three donors and were then characterized and expanded. Cells were cultured for 24 hours in adipogenic differentiation medium followed by protein extraction. We used shotgun proteomics to compare the proteomic profile of 24 h-adipogenic, differentiated, and undifferentiated hASC. We also used our previous next-generation sequencing data (RNA-seq) of the total and polysomal mRNA fractions of hASC to study posttranscriptional regulation during the initial steps of adipogenesis. Results. We identified 3420 proteins out of 48,336 peptides, of which 92 proteins were exclusively identified in undifferentiated hASC and 53 proteins were exclusively found in 24 h-differentiated cells. Using a stringent criterion, we identified 33 differentially abundant proteins when comparing 24 h-differentiated and undifferentiated hASC (14 upregulated and 19 downregulated, respectively). Among the upregulated proteins, we shortlisted several adipogenesis-related proteins. A combined analysis of the proteome and the transcriptome allowed the identification of positive correlation coefficients between proteins and mRNAs. Conclusions. These results demonstrate a specific proteome profile related to adipogenesis at the beginning (24 hours) of the differentiation process in hASC, which advances the understanding of human adipogenesis and obesity. Adipogenic differentiation is finely regulated at the transcriptional, posttranscriptional, and posttranslational levels.

2009 ◽  
Vol 13 (4) ◽  
pp. 331-336 ◽  
Author(s):  
Yan-Feng Tang ◽  
Yong Zhang ◽  
Xiao-Yu Li ◽  
Cai Li ◽  
Weidong Tian ◽  
...  

2016 ◽  
Vol 84 ◽  
pp. 1601-1609 ◽  
Author(s):  
Chien-Chih Chen ◽  
Li-Wen Hsu ◽  
Toshiaki Nakano ◽  
Kuang-Tzu Huang ◽  
Kuang-Den Chen ◽  
...  

2018 ◽  
Vol 19 (12) ◽  
pp. 4095 ◽  
Author(s):  
Emanuela Chiarella ◽  
Annamaria Aloisio ◽  
Stefania Scicchitano ◽  
Valeria Lucchino ◽  
Ylenia Montalcini ◽  
...  

Human adipose-derived stem cells (hADSCs) are multipotent mesenchymal cells that can differentiate into adipocytes, chondrocytes, and osteocytes. During osteoblastogenesis, the osteoprogenitor cells differentiate into mature osteoblasts and synthesize bone matrix components. Zinc finger protein 521 (ZNF521/Zfp521) is a transcription co-factor implicated in the regulation of hematopoietic, neural, and mesenchymal stem cells, where it has been shown to inhibit adipogenic differentiation. The present study is aimed at determining the effects of ZNF521 on the osteoblastic differentiation of hADSCs to clarify whether it can influence their osteogenic commitment. The enforced expression or silencing of ZNF521 in hADSCs was achieved by lentiviral vector transduction. Cells were cultured in a commercial osteogenic medium for up to 20 days. The ZNF521 enforced expression significantly reduced osteoblast development as assessed by the morphological and molecular criteria, resulting in reduced levels of collagen I, alkaline phosphatase, osterix, osteopontin, and calcium deposits. Conversely, ZNF521 silencing, in response to osteoblastic stimuli, induced a significant increase in early molecular markers of osteogenesis and, at later stages, a remarkable enhancement of matrix mineralization. Together with our previous findings, these results show that ZNF521 inhibits both adipocytic and osteoblastic maturation in hADSCs and suggest that its expression may contribute to maintaining the immature properties of hADSCs.


2014 ◽  
Vol 15 (4) ◽  
pp. 6517-6526 ◽  
Author(s):  
Maria Scioli ◽  
Alessandra Bielli ◽  
Pietro Gentile ◽  
Donatella Mazzaglia ◽  
Valerio Cervelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document