polypyrimidine tract binding
Recently Published Documents


TOTAL DOCUMENTS

256
(FIVE YEARS 22)

H-INDEX

54
(FIVE YEARS 2)

2021 ◽  
Vol 13 ◽  
Author(s):  
Zhepei Wang ◽  
Shengjun Zhou ◽  
Jikuang Zhao ◽  
Sheng Nie ◽  
Jie Sun ◽  
...  

DNA methylation at the gene promoter region is reportedly involved in the development of intracranial aneurysm (IA). This study aims to investigate the methylation levels of polypyrimidine tract-binding protein 1 (PTBP1) in IA, as well as its potential to predict IA. Forty-eight patients with IA and 48 age- and sex-matched healthy controls were recruited into this study. Methylation levels of CpG sites were determined via bisulfite pyrosequencing. The PTBP1 levels in the blood were determined using a real-time quantitative reverse transcription-polymerase chain reaction test. Significant differences were found between IAs and controls in CpG1 (p = 0.001), CpG2 (p < 0.001), CpG3 (p = 0.037), CpG4 (p = 0.003), CpG5 (p = 0.006), CpG6 (p = 0.02), and mean methylation (p < 0.001). The mRNA level of PTBP1 in the blood was much lower in IAs compared with controls (p = 0.002), and the PTBP1 expression was significantly associated with DNA methylation promoter levels in individuals (r = −0.73, p < 0.0001). In addition, stratification analysis comparing smokers and non-smokers revealed that tobacco smokers had significantly higher levels of DNA methylation in PTBP1 than non-smokers (p = 0.002). However, no statistical difference in PTBP1 methylation was found between ruptured and unruptured IA groups (p > 0.05). The ROC analyses of curves revealed that PTBP1 methylation may be a predictor of IA regardless of sex (both sexes, area under curve (AUC) = 0.78, p < 0.0001; male, AUC = 0.76, p = 0.002; female, AUC = 0.79, p < 0.0001). These findings suggest that long-term tobacco smoke exposure led to DNA methylation in the promoter region of the PTBP1 gene, which further decreased PTBP1 gene expression and participated in the pathogenesis of IA. The methylation of PTBP1 may be a potential predictive marker for the occurrence of IA.


2021 ◽  
Author(s):  
Jessica A Hensel ◽  
Sarah-Anne E Nicholas ◽  
Evan R Jellison ◽  
Amy L Kimble ◽  
Antoine Menoret ◽  
...  

NFkB mediated endothelial activation drives leukocyte recruitment and atherosclerosis, in part through upregulation of adhesion molecules Icam1 and Vcam. The endothelium is primed for cytokine activation of NFkB by exposure to low and disturbed blood flow (LDF) in vivo and by LDF or static conditions in cultured cells. While priming leads to an exaggerated expression of Icam1 and Vcam following cytokine stimulation, the molecular underpinnings are not fully understood. We showed that alternative splicing of genes regulating NFkB signaling occurs during priming, but the functional implications of this are not known. We hypothesize that the regulation of splicing by RNA-binding splice factors is critical for priming. Here, we perform a CRISPR screen in cultured aortic endothelial cells to determine whether splice factors active in the response to LDF participate in endothelial cell priming. Using Icam1 and Vcam induction by TNFalpha stimulation as a marker of priming, we identify polypyrimidine tract binding protein (Ptbp1) as a required splice factor. Ptbp1 expression is increased and its motifs are enriched nearby alternatively spliced exons in endothelial cells exposed to LDF in vivo in a platelet dependent manner, indicating its induction by early innate immune cell recruitment. At a mechanistic level, deletion of Ptbp1 inhibited NFkB nuclear translocation and transcriptional activation. These changes coincided with altered splicing of key components of the NFkB signaling pathway that were similarly altered in the LDF response. However, these splicing and transcriptional changes could be restored by expression of human PTBP1 cDNA in Ptbp1 deleted cells. In vivo, endothelial specific deletion of Ptbp1 reduced myeloid cell infiltration at regions of LDF in atherosclerotic mice. In human coronary arteries, PTBP1 expression correlates with expression of TNF pathway genes and amount of plaque. Together, our data suggest that Ptbp1, which is activated in the endothelium by innate immune cell recruitment in regions of LDF, is required for priming of the endothelium for subsequent NFkB activation and myeloid cell recruitment in vascular inflammation.


2020 ◽  
Vol 40 (10) ◽  
pp. 2440-2453
Author(s):  
Jianzhen Lei ◽  
Xiaoxin Liu ◽  
Miaomiao Song ◽  
Yingying Zhou ◽  
Jia Fan ◽  
...  

Objective: Calcium channel blockers, such as dihydropyridines, are commonly used to inhibit enhanced activity of vascular Ca V 1.2 channels in hypertension. However, patients who are insensitive to such treatments develop calcium channel blocker-resistant hypertension. The function of Ca V 1.2 channel is diversified by alternative splicing, and the splicing factor PTBP (polypyrimidine tract-binding protein) 1 influences the utilization of mutually exclusive exon 8/8a of the Ca V 1.2 channel during neuronal development. Nevertheless, whether and how PTBP1 makes a role in the calcium channel blocker sensitivity of vascular Ca V 1.2 channels, and calcium channel blocker-induced vasodilation remains unknown. Approach and Results: We detected high expression of PTBP1 and, inversely, low expression of exon 8a in Ca V 1.2 channels (Ca V 1.2 E8a ) in rat arteries. In contrast, the opposite expression patterns were observed in brain and heart tissues. In comparison to normotensive rats, the expressions of PTBP1 and Ca V 1.2 E8a channels were dysregulated in mesenteric arteries of hypertensive rats. Notably, PTBP1 expression was significantly downregulated, and Ca V 1.2 E8a channels were aberrantly increased in dihydropyridine-resistant arteries compared with dihydropyridine-sensitive arteries of rats and human. In rat vascular smooth muscle cells, PTBP1 knockdown resulted in shifting of Ca V 1.2 exon 8 to 8a. Using patch-clamp recordings, we demonstrated a concomitant reduction of sensitivity of Ca V 1.2 channels to nifedipine, due to the higher expression of Ca V 1.2 E8a isoform. In vascular myography experiments, small interfering RNA-mediated knockdown of PTBP1 attenuated nifedipine-induced vasodilation of rat mesenteric arteries. Conclusions: PTBP1 finely modulates the sensitivities of Ca V 1.2 channels to dihydropyridine by shifting the utilization of exon 8/8a and resulting in changes of responses in dihydropyridine-induced vasodilation.


2020 ◽  
Author(s):  
Jérôme Bourret ◽  
Fanni Borvető ◽  
Ignacio G. Bravo

AbstractGene paralogs are copies of a same gene that appear after gene or full genome duplication. Redundancy generated by gene duplication may release certain evolutionary pressures, allowing one of the copies to access novel gene functions. Here we focused on role of codon usage preferences (CUPrefs) during the evolution of the polypyrimidine tract binding protein (PTBP) splicing regulator paralogs.PTBP1-3 show high identity at the amino acid level (up to 80%), but display different nucleotide composition, divergent CUPrefs and distinct tissue-specific expression levels. Phylogenetic inference differentiates the three orthologs and suggests that the three PTBP1-3 lineages predate the basal diversification within vertebrates. We identify a distinct substitution pattern towards GC3-enriching mutations in PTBP1, with a trend for the use of common codons and for a tissue-wide expression. Genomic context analysis shows that GC3-rich nucleotide composition for PTBP1s is driven by local mutational processes. In contrast, PTBP2s are enriched in AT-ending, rare codons, and display tissue-restricted expression. Nucleotide composition and CUPrefs of PTBP2 are only partly driven by local mutational forces, and could have been shaped by selective forces. Interestingly, trends for use of UUG-Leu codon match those of AT-ending codons.Our interpretation is that a combination of mutation and selection has differentially shaped CUPrefs of PTBPs in Vertebrates: GC-enrichment of PTBP1 is linked to the strong and broad tissue-expression, while AT-enrichment of PTBP2 and PTBP3 is linked to rare CUPrefs and specialized spatio-temporal expression. Our model is compatible with a gene subfunctionalisation process by differential expression regulation associated to the evolution of specific CUPrefs.


2020 ◽  
Vol 48 (8) ◽  
pp. 4521-4537
Author(s):  
Christophe Maris ◽  
Sandrine Jayne ◽  
Fred F Damberger ◽  
Irene Beusch ◽  
Georg Dorn ◽  
...  

Abstract The polypyrimidine tract binding protein (PTB) is a multi-domain protein involved in alternative splicing, mRNA localization, stabilization, polyadenylation and translation initiation from internal ribosome entry sites (IRES). In this latter process, PTB promotes viral translation by interacting extensively with complex structured regions in the 5′-untranslated regions of viral RNAs at pyrimidine-rich targets located in single strand and hairpin regions. To better understand how PTB recognizes structured elements in RNA targets, we solved the solution structure of the N-terminal RNA recognition motif (RRM) in complex with an RNA hairpin embedding the loop sequence UCUUU, which is frequently found in IRESs of the picornovirus family. Surprisingly, a new three-turn α3 helix C-terminal to the RRM, folds upon binding the RNA hairpin. Although α3 does not mediate any contacts to the RNA, it acts as a sensor of RNA secondary structure, suggesting a role for RRM1 in detecting pyrimidine tracts in the context of structured RNA. Moreover, the degree of helix formation depends on the RNA loop sequence. Finally, we show that the α3 helix region, which is highly conserved in vertebrates, is crucial for PTB function in enhancing Encephalomyocarditis virus IRES activity.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Elisa Monzón-Casanova ◽  
Louise S Matheson ◽  
Kristina Tabbada ◽  
Kathi Zarnack ◽  
Christopher WJ Smith ◽  
...  

Polypyrimidine tract-binding protein 1 (PTBP1) is a RNA-binding protein (RBP) expressed throughout B cell development. Deletion of Ptbp1 in mouse pro-B cells results in upregulation of PTBP2 and normal B cell development. We show that PTBP2 compensates for PTBP1 in B cell ontogeny as deletion of both Ptbp1 and Ptbp2 results in a complete block at the pro-B cell stage and a lack of mature B cells. In pro-B cells PTBP1 ensures precise synchronisation of the activity of cyclin dependent kinases at distinct stages of the cell cycle, suppresses S-phase entry and promotes progression into mitosis. PTBP1 controls mRNA abundance and alternative splicing of important cell cycle regulators including CYCLIN-D2, c-MYC, p107 and CDC25B. Our results reveal a previously unrecognised mechanism mediated by a RBP that is essential for B cell ontogeny and integrates transcriptional and post-translational determinants of progression through the cell cycle.


Sign in / Sign up

Export Citation Format

Share Document