Application of Remote Sensing Technology in Sediment Estimating Entering the Dam Reservoirs due to Floods
The present study aimed to use remote sensing technology to estimate the concentration of particulate materials in the water entering the reservoirs of dams and consequently investigate the possibility of estimating the amount of sediment carried to the reservoir by flood during the life of the dam and its annual estimate. Using an advanced spectrometer device (ASD), the reflectance values of water containing different amounts of particulate sediments were measured in the range of 400–2500 nm; then, these reflectance values were represented for the Landsat 8 satellite OLI bands using their spectral response functions. In the study of interband correlation with the number of particulate materials, band 2 (blue) and band 5 (near-infrared) were identified to prepare a specific and appropriate model. The specificity of the reflectance difference in the two abovementioned bands was presented as an exponential relationship between the concentration of particulate materials and spectral reflectance. In this model, the RMSE parameter for the maximum possible sediment concentration was equal to 1.57 and the parameter R2 was equal to 0.91. In the second step, at the same time as the satellite passed, the area was visited and the sediments of the Ardak dam reservoir were sampled by recording their location. To complete this research, two measures were performed simultaneously, calculating the concentration of particulate materials sampled in the laboratory environment and their location on the image. Then, the number of particulate materials is estimated by taking into account the coordinates recorded from the images on which the relevant corrections have been made. According to the extracted exponential model, the results of estimating the concentration of particulate matter obtained from the model and Landsat satellite images with the concentration of particulate matter obtained from sampling showed its complete compatibility with field surveys to validate this research.