The Mechanism of miR-141 Regulating the Proliferation and Metastasis of Liver Cancer Cells by Targeting STAT4
Background. In recent years, it has been reported that miRNA can be used as one of the markers of tumor diagnosis, treatment, and prognosis (including liver cancer), and it plays an important role in tumorigenesis. However, there are still very few studies on the mechanism and role of miR-141 in liver cancer. Methods. qRT-PCR was used to test the expressions of miR-141 and STAT4 in collected liver cancer tissues and adjacent tissues, cultured liver cancer cell lines MHCC97H, Hep3B, and Huh7, and normal human liver cells HL7702. After processing the results of the qRT-PCR experiment, liver cancer cell MHCC97H which has the lowest expression level was decided to be taken as the research object. miR-NC, miR-141 mimics, si-NC, si-STAT4, miR-141 mimics and pcDNA-NC, and miR-141 mimics and pcDNA-STAT4 were transfected into MHCC97H cells, respectively. The MTT assay was used to detect the proliferation of each group of cells, and the Transwell test was used to detect the effect of miR-141 on cell proliferation, migration, and invasion. The interaction between miR-141 and STAT4 was verified by the dual-luciferase reporter experiment, and the expression level of Cyclin D1 and MMP2 was detected by the western blot. Results. Compared with normal cell HL7702, the expression level of miR-141 in liver cancer cell lines was relatively low P < 0.05 and the expression level of STAT4 in liver cancer cell lines was relatively high P < 0.05 after testing the expression level of STAT4; transfecting miR-141 mimics or Si-SLBP can inhibit cell proliferation, migration, and invasion; dual-luciferase reporter experiments confirmed that miR-141 can specifically bind to the 3′UTR of STAT4; cotransfection of miR-141 mimics and pcDNA-STAT4 can antagonize the effects of miR-141 mimics on cell proliferation, migration, and invasion. Conclusion. miR-141 can target the STAT4 gene expression to inhibit the proliferation, migration, and invasion of liver cancer cells.