therapy response
Recently Published Documents


TOTAL DOCUMENTS

1784
(FIVE YEARS 734)

H-INDEX

57
(FIVE YEARS 12)

2022 ◽  
Vol 11 ◽  
Author(s):  
Chia-Chang Wu ◽  
Yuan-Hung Wang ◽  
Su-Wei Hu ◽  
Wen-Ling Wu ◽  
Chi-Tai Yeh ◽  
...  

BackgroundDysfunctional transcription machinery with associated dysregulated transcription characterizes many malignancies. Components of the mediator complex, a principal modulator of transcription, are increasingly implicated in cancer. The mediator complex subunit 10 (MED10), a vital kinase module of the mediator, plays a critical role in bladder physiology and pathology. However, its role in the oncogenicity, metastasis, and disease recurrence in bladder cancer (BLCA) remains unclear.ObjectiveThus, we investigated the role of dysregulated or aberrantly expressed MED10 in the enhanced onco-aggression, disease progression, and recurrence of bladder urothelial carcinoma (UC), as well as the underlying molecular mechanism.MethodsUsing an array of multi-omics big data analyses of clinicopathological data, in vitro expression profiling and functional assays, and immunocytochemical staining, we assessed the probable roles of MED10 in the progression and prognosis of BLCA/UC.ResultsOur bioinformatics-aided gene expression profiling showed that MED10 is aberrantly expressed in patients with BLCA, is associated with high-grade disease, is positively correlated with tumor stage, and confers significant survival disadvantage. Reanalyzing the TCGA BLCA cohort (n = 454), we showed that aberrantly expressed MED10 expression is associated with metastatic and recurrent disease, disease progression, immune suppression, and therapy failure. Interestingly, we demonstrated that MED10 interacts with and is co-expressed with the microRNA, hsa-miR-590, and that CRISPR-mediated knockout of MED10 elicits the downregulation of miR-590 preferentially in metastatic UC cells, compared to their primary tumor peers. More so, silencing MED10 in SW1738 and JMSU1 UC cell lines significantly attenuates their cell proliferation, migration, invasion, clonogenicity, and tumorsphere formation (primary and secondary), with the associated downregulation of BCL-xL, MKI67, VIM, SNAI1, OCT4, and LIN28A but upregulated BAX protein expression. In addition, we showed that high MED10 expression is a non-inferior biomarker of urothelial recurrence compared with markers of cancer stemness; however, MED10 is a better biomarker of local recurrence than any of the stemness markers.ConclusionThese data provide preclinical evidence that dysregulated MED10/MIR590 signaling drives onco-aggression, disease progression, and recurrence of bladder UC and that this oncogenic signal is therapeutically actionable for repressing the metastatic/recurrent phenotypes, enhancing therapy response, and shutting down stemness-driven disease progression and relapse in patients with BLCA/UC.


2022 ◽  
Author(s):  
Jianchao Zheng ◽  
Zhilong Li ◽  
Xiuqing Zhang ◽  
Hongyun Zhang ◽  
Shida Zhu ◽  
...  

Cell-free DNA (cfDNA) profiling by deep sequencing (i.e., by next generation sequencing (NGS)) has wide applications in cancer diagnosis, prognosis, and therapy response monitoring. One key step of cfDNA deep sequencing workflow is NGS library construction, whose efficiency significantly affects the utilization efficiency of cfDNA molecules, and eventually determines effective sequencing depth and sequencing accuracy. In this study, we compared two different types of cfDNA library construction methods, namely double-stranded library (dsLib, the conventional method which captures dsDNA molecules) and single-stranded library (ssLib) preparation, which captures ssDNA molecules, for the applications of mutation detection and methylation profiling, respectively. Our results suggest that the dsLib method was suitable for mutation detection while the ssLib method proved more efficient for methylation analysis. Our findings could help researchers choose the more appropriate library construction method for corresponding downstream applications of cfDNA sequencing.


2022 ◽  
Vol 29 (1) ◽  
pp. 283-293
Author(s):  
Xueying Wu ◽  
Chenyang Zhang ◽  
Henghui Zhang

Background: HER2-positive breast cancer (BC) is a highly aggressive phenotype. The role of the host immune features in predictive response to anti-HER2 therapies and prognosis in BC has already been suggested. We aimed to develop a predictive and prognostic model and examine its relevance to the clinical outcomes of patients with HER2-positive BC. Methods: Immune effective score (IES) was constructed using principal component analysis algorithms. A bioinformatic analysis using four independent cohorts (GSE66305, n = 88; GSE130786, n = 110; TCGA, n = 123; METABRIC, n = 236) established associations between IES and clinical outcomes. Results: Genes associated with neoadjuvant trastuzumab therapy response were enriched in pathways related to antitumor immune activities. IES was demonstrated to be a predictive biomarker to neoadjuvant trastuzumab therapy benefits (GSE66305: area under the curve (AUC) = 0.804; GSE130786: AUC = 0.704). In addition, IES was identified as an independent prognostic factor for overall survival (OS) in the TCGA cohort (p = 0.036, hazard ratio (HR): 0.66, 95% confidence interval (CI): 0.449–0.97) and METABRIC cohort (p = 0.037, HR: 0.9, 95% CI: 0.81–0.99). Conclusion: IES has a predictive value for response to neoadjuvant trastuzumab therapy and independent prognostic value for HER2-positive breast cancer.


Author(s):  
Nithi Tokavanich ◽  
Narut Prasitlumkum ◽  
Wimwipa Mongkonsritragoon ◽  
Angkawipa Trongtorsak ◽  
Wisit Cheungpasitporn ◽  
...  

2022 ◽  
Vol 11 ◽  
Author(s):  
Kai Li ◽  
Shan Gao ◽  
Lei Ma ◽  
Ye Sun ◽  
Zi-Yang Peng ◽  
...  

The molecular mechanism of the tyrosine kinase inhibitor (TKI) resistant lung adenocarcinoma is currently unclear, and the role of methylated adenosine at the N6 position in the resistance of cancer stem cells (CSCs) therapy is unknown. This study identified a novel and effective strategy to enhance TKIs therapy response. We first confirmed the sensitization of Metformin enforcing on Osimertinib treatment and revealed the mature miRNAs signatures of the Osimertinib resistant H1975 and HCC827 cells. Let-7b expression was stimulated when adding Metformin and then increasing the therapy sensitivity by decreasing the stem cell groups expanding. Methyltransferase-like 3 (METTL3) increased the pri-Let-7b, decreased both the pre-Let-7b and mature Let-7b, attenuating the Let-7b controlling of stem cell renewal. The addition of Metformin increased the bindings of DNA methyltransferase-3a/b (DNMT3a/b) to the METTL3 promoter. With the help of the readers of NKAP and HNRNPA2B1, the cluster mediated m6A formation on pri-Let-7b processing increased the mature Let-7b, the key player in suppressing Notch signaling and re-captivating Osimertinib treatment. We revealed that the maturation processing signaling stimulated the methylation regulation of the miRNAs, and may determine the stemness control of the therapy resistance. Our findings may open up future drug development, targeting this pathway for lung cancer patients.


Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 179
Author(s):  
Elizabeth R. Stirling ◽  
Steven M. Bronson ◽  
Jessica D. Mackert ◽  
Katherine L. Cook ◽  
Pierre L. Triozzi ◽  
...  

Expression of immune checkpoint proteins restrict immunosurveillance in the tumor microenvironment; thus, FDA-approved checkpoint inhibitor drugs, specifically PD-1/PD-L1 and CTLA-4 inhibitors, promote a cytotoxic antitumor immune response. Aside from inflammatory signaling, immune checkpoint proteins invoke metabolic reprogramming that affects immune cell function, autonomous cancer cell bioenergetics, and patient response. Therefore, this review will focus on the metabolic alterations in immune and cancer cells regulated by currently approved immune checkpoint target proteins and the effect of costimulatory receptor signaling on immunometabolism. Additionally, we explore how diet and the microbiome impact immune checkpoint blockade therapy response. The metabolic reprogramming caused by targeting these proteins is essential in understanding immune-related adverse events and therapeutic resistance. This can provide valuable information for potential biomarkers or combination therapy strategies targeting metabolic pathways with immune checkpoint blockade to enhance patient response.


2022 ◽  
Author(s):  
Christine M Lim ◽  
Junli Shi ◽  
Jess Vo ◽  
Wai Min Phyo ◽  
Min Hu ◽  
...  

Precision medicine is playing an increasingly important role in cancer management and treatment. Specifically in the field of oncology, circulating tumor cells (CTCs) hold significant promise in enabling non-invasive prognostication and near real-time monitoring to individualize treatments. In this study, we present strong associations between CTC subtype counts with treatment response and tumor staging in lung, nasopharyngeal and breast cancers. Longitudinal analysis of CTC count changes over short-time windows further reveals the ability to predict treatment response close to real-time. Our findings demonstrate the suitability of CTCs as a definitive blood-based metric for continuous treatment monitoring. Robust processing of high-throughput image data, explainable classification of CTC subtypes and accurate quantification were achieved using an in-house image analysis system CTC-Quant, which showed excellent agreement with expert opinion upon extensive validation.


Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 217
Author(s):  
Niklas Sturm ◽  
Thomas J. Ettrich ◽  
Lukas Perkhofer

Pancreatic ductal adenocarcinoma (PDAC) is still difficult to treat due to insufficient methods for early diagnosis and prediction of therapy response. Furthermore, surveillance after curatively intended surgery lacks adequate methods for timely detection of recurrence. Therefore, several molecules have been analyzed as predictors of recurrence or early detection of PDAC. Enhanced understanding of molecular tumorigenesis and treatment response triggered the identification of novel biomarkers as predictors for response to conventional chemotherapy or targeted therapy. In conclusion, progress has been made especially in the prediction of therapy response with biomarkers. The use of molecules for early detection and recurrence of PDAC is still at an early stage, but there are promising approaches in noninvasive biomarkers, composite panels and scores that can already ameliorate the current clinical practice. The present review summarizes the current state of research on biomarkers for diagnosis and therapy of pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document