scholarly journals Dynamic Modeling and CAE Cosimulation Method for Heavy-Duty Concrete Spreader

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shiying Zhang ◽  
Ke Zhang ◽  
Bo Song ◽  
Wenda Yu ◽  
Dong Li

This paper presents the dynamic model of heavy-duty concrete spreader with liquid-solid rigid-flexible coupling by means of mathematical modeling and CAE cosimulation. The mathematical method of liquid-solid dynamic model of heavy-duty concrete spreader is described. Based on the liquid-solid coupling system, two degrees of freedom are added to change the model into a liquid-solid rigid-flexible coupling model, and the calculation process of the model is given in detail. The results show that, considering two flexible body factors, the solution scale is relatively large and the complexity of mathematical model derivation is increased. It is very difficult to establish a general dynamic equation which can be easily solved by computer. Therefore, this paper presents a new method of CAE cosimulation of liquid-solid rigid-flexible coupling. This method is divided into two parts: the computer simulation process of liquid-solid coupling and the computer simulation process of rigid-flexible coupling. First, the fluid-solid coupling is carried out by COMSOL software, and then the rigid-flexible coupling is carried out by HyperMesh software, Ansys software, and Adams software. This method can easily establish the dynamic model of the liquid-solid rigid-flexible coupling system, which provides a new idea for the simulation of heavy-duty concrete spreader. The simulation results can provide valuable insights into product design and structural optimization.

2013 ◽  
Vol 427-429 ◽  
pp. 266-270
Author(s):  
Yue Gang Wang ◽  
Zhao Yang Zuo ◽  
Jian Guo Wu ◽  
Hai Bo Li

In order to study the dynamic characteristics of centrifuge facility-vibration shaker system, In the establishment of centrifuge facility-vibration shaker system multi-body dynamic model based on virtual mocking technology, the virtual dynamic model of the entire centrifuge facility-vibration shaker system more close to reality is built up by the transmission of finite element of flexible centrifuge arm. This paper describes how to build the 3-D virtual prototype of centrifuge facility-vibration shaker system by using Pro/e and ADAMS software, and how to create the modal neutral file of the centrifuge arm by using ANSYS software. Considering the system as a rigid-flexible coupling system, the dynamical simulation is carried out, and the results are benefit for the further research of its kinetic behavior, dynamic and variable characteristics basis and the design of such system.


Author(s):  
G V Krejnin ◽  
I L Krivz ◽  
L A Smelov

Positioning accuracy of a pneumatic piston drive with flexible coupling between the piston and rod is considered. Improved positioning was expected due to the fact that the rod friction is usually considerably less than the piston friction. When the piston stops under the action of its friction force the rod continues the motion, providing the precision positioning of the output link. A mathematical model of a positioning pneumatic piston drive with two degrees of freedom was generated. Computer simulation of the performance of short and long strokes showed the feasibility of the improved positioning which provided design and control parameter optimization.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Peng Guo ◽  
Jiewei Lin ◽  
Zefeng Lin ◽  
Jinlu Li ◽  
Chi Liu ◽  
...  

The ride comfort and the cargo safety are of great importance in the vibration design of heavy-duty vehicle. Traditional ride comfort design method based on the response of components of vehicles or interaction between human and seat overlooks the most direct criterion, the response of occupants, which makes the optimisation not targeted enough. It will be better to conduct the ride comfort design with the biodynamic response of driver. To this end, a 17-degrees-of-freedom (DOFs) vertical-pitch-roll vehicle dynamic model of a three-axle heavy-duty truck coupled with a 7 DOFs human model is developed. The ride comfort of human body under the vertical, the pitch, and the roll vibrations can be evaluated with the weighted root-mean-square (r.m.s.) acceleration of the driver in multiple directions. The flexibilities of chassis and carriage are also considered to improve the accuracy of the prediction of the ride comfort and to constrain the mounting optimisation of cab and carriage. After validation, the sensitivity analysis of the mounting system, the suspensions, and arrangement of sprung masses is carried out and significant factors to ride vibration are identified. The optimal combination of design parameters is obtained with the objective of minimizing the vibration of the driver and carriage simultaneously. The optimisation result shows that the weighted driver vibration is reduced by 27.9% and the carriage vibration is reduced by 31.8% at various speeds.


Author(s):  
Bohuan Tan ◽  
Yuanchang Chen ◽  
Quanfu Liao ◽  
Bangji Zhang ◽  
Nong Zhang ◽  
...  

The existing powertrain mounting models of the heavy-duty truck for optimizing the mounts parameters cannot well describe the deformation of the chassis frame. To overcome this disadvantage, a new full vehicle model is proposed which embraces the view of system modeling and includes the frame flexibility. The model can achieve optimal parameters of the Powertrain Mounting System for isolating the vibration transmitted from the powertrain to the chassis. A model reduction technique, improved reduced system, is used to obtain a reduced model of the frame to represent its original large-scale finite element analysis model for the accessibility of time-efficient solutions of the model. The reduced frame model is integrated with the powertrain mounting and suspension model to form the full dynamic model of the vehicle. The accuracy and effectiveness of the proposed model are evaluated by its original vehicle model built in software ADAMS and an existing rigid model with rigid foundation. A hybrid model optimization strategy is also presented to tune the dynamic parameters of the powertrain mounts using the developed coupling model. The simulation results show that the proposed coupling model has better representation of the dynamic characteristics of the real vehicle system, and the presented hybrid model optimization strategy can obtain better optimization results compared with the existing rigid model with rigid foundation. In addition, the application of the proposed model can also be extended to the vibration control and the structural fatigue prediction.


2012 ◽  
Vol 226-228 ◽  
pp. 590-597
Author(s):  
Tong Zheng ◽  
Ding Guo Zhang ◽  
Jian Zhu

In this paper, based on the nonlinear elastic theory, dynamic modeling for a thin plate with large deformation is proposed considering high-order deformation terms using hybrid-coordinate formulation. Through the calculation the potential energy and kinetic energy of the plate, rigid-flexible coupling dynamic equations is established. It is shown that the difference between the deformation results obtained by the present high-order dynamic model and those obtained by one-order approximate dynamic model is not significant in case of large deformation ,both them can calculation large deformation problem. However, the amplitude of vibration obtained by the present high-order dynamicmodel is smaller than that obtained by one-order approximate dynamic model. Furthermore, dynamic stiffening and softening effect of the rigid-flexible coupling system undergoing translational large overall motion is investigated. It is shown that with the reduce of the modulus of elasticity, the influence of the translational acceleration on the vibration frequency of the rigid-flexible coupling system is more significant.


2013 ◽  
Vol 275-277 ◽  
pp. 741-745
Author(s):  
Jie Wu ◽  
Wei Dong Yang ◽  
Zhi Hao Yu

Based on the finite rotation hypothesis, a rigid-flexible coupling dynamic model is developed. It introduces three rigid degrees of freedom with respect to classical moderate deflection beam theory. With quasi-steady theory and pre-described wake model, aerodynamic forces are tightly coupled with structural motions. Structural forces and moments are computed while equations of motions are solved. Sectional loads by three load caculation methods are examined by the analysis results of BO105 and the flight test data of the SA349/2 helicopter. Force integration method can handle vast ranges of computation cases. The predictions are relatively good except for the numerical integrating errors. Accuracy of reaction force method depends on the accuracy of response solutions and can not predict the loads at points between nodes. For the articulated rotor, force integration method shows better results than curvature method on retreating side.


2013 ◽  
Vol 572 ◽  
pp. 480-484
Author(s):  
Shen Long Li ◽  
Jiang Li Pan ◽  
Hua Bing Yin

The stability and reliability of the shift friction plate are the main condition to guarantee the normal working for the planetary gearbox. But the failures of the friction plate, such as fracture or broken plastic deformation, often appear during the real vehicle testing process. Currently, most studies focus on chemical composition analysis and fracture analysis for the fractured friction plate, but less study for shock damage. In this paper, we develop a multi-body dynamic model, a finite element model and a rigid-flexible coupling dynamic model to analyze and compare the vibration characteristics of the friction plate with three different support forms. The variation law of the impact force and frequency can be obtained for the tooth portion of the friction plate with different support forms. Finally, it can provide theoretical guidance for studying the failure of friction plate at high speed. Keywords: Friction Plate; Rigid-flexible Coupling; Vibration Characteristics


2010 ◽  
Vol 26-28 ◽  
pp. 512-516
Author(s):  
Xiu Long Chen ◽  
Shuai Shuai Jia ◽  
Yu Deng ◽  
Yong Sheng Zhao

In order to obtain dynamic behaviors of a spatial rigid-flexible coupling system of PMT(parallel machine tool) without the construction of mathematical model, a new method for dynamic behaviors simulation, which integrates CAD, CAE and visual technologies, was presented. The solid model of PMT was built in SolidWorks and transmitted to ADAMS, the modal neutral file of flexible body including driving limbs and spherical joints were generated in ANSYS, and introduced into ADAMS, then the rigid-flexible coupling model of PMT was build. Based on the rigid-flexible coupling model, the dynamic behaviors, which includes displacements error output response, dynamic stress of driving limbs and natural frequency, were realized. The simulation results show that the rigid-flexible coupling model established can indicate the dynamic behaviors of PMT. The flexibility of driving limbs and spherical joints are demonstrated to have significant impact on dynamics characteristics of PMT. This research can provide the important theoretical base of the optimization design of dynamic parameters for PMT.


2014 ◽  
Vol 889-890 ◽  
pp. 152-155 ◽  
Author(s):  
Xin Lin Wei ◽  
Yi Jiang

In this paper, a certain type of vehicle missile launching system is the research object, which uses CAE technology to make a flexible coupling system dynamics simulation and analysis to provide a reference for similar tests. Since the complex structure of the vehicle missile system, reasonable assumptions and simplifications are made in establishing the dynamics model. Pro/E is used to build the three-dimensional model, and then it is imported to the ABAQUS to establish its dynamics model. Finally, in a complete virtual prototyping system model, we make a simulation of working conditions, and draw conclusions and analysis. The results show that the use of independent dynamics rigid-flexible coupling model dynamics simulation based on ABAQUS can be more realistic simulation of the process of vehicle missile launch, and it verifies the results of different working conditions, which provides a reference for the vehicle missile launching systems simulation .


2020 ◽  
Vol 17 (1) ◽  
pp. 172988141989508
Author(s):  
Chengjun Wang ◽  
Chengke Xu ◽  
Long Li ◽  
Haixia Hu ◽  
Yongcun Guo

Aim to the problems of low load and precision of the serial manipulator used in casting operation. Casting execution equipment based on 2UPR-2RPU mechanism was designed. A prototype of heavy-duty casting robot has been proposed and developed. Based on the theory of robot topology, the mechanism constraint relation of the casting execution equipment was analyzed, and it is concluded that the casting actuator has three degrees of freedom. Both the inverse position equation of the casting execution equipment and axial velocity equation of branch chain were established. In this article, kinematics simulation of the casting execution equipment based on ADAMS software was presented, and its kinematics characteristics of each parallel branch chain were analyzed. The validity of this kinematics model of casting actuator was verified. Based on the working space analysis method for parallel mechanism, the working space range of casting execution equipment was simulated by the MATLAB software. This research provides a reference for expanding the application of hybrid structural robot in casting field and developing casting heavy-duty casting robotic products.


Sign in / Sign up

Export Citation Format

Share Document