Signal Control Strategy for Supersaturated Traffic at Urban Road Intersections with a Large Technical Grade Gap
To reduce the risk of queuing overflow on the urban minor road at the intersection under supersaturation where the capacity of the arterial and minor roads shows extreme disparity, reduce the adverse effects caused by long queues of vehicles on the minor road, and comprehensively balance the multiobjective requirements such as priority of the main road, queuing restrictions, and delay on the minor road, the minor road queue model at the end of red, a road remaining capacity model, and multiparameter coordinated signal control model were established, and a multiobjective genetic algorithm was used to optimize this solution. As an example, the multiparameter coordinated control strategy decreased the delay per vehicle by approximately 17% and the queue length by approximately 30%–50% on the minor road and slightly increased the delay per vehicle at the intersection and the length on the main road queue. This control strategy can make full use of the capacity of the main road to control the queue length on the minor road, effectively reduce the risk of minor road queue overflow blocking local road network traffic operation involved, and comprehensively balance the traffic demand between arterial and minor roads. It provides a reference control method for coping with the transfer of the main traffic contradiction under the oversaturated state of the road intersection with large disparity.