microscopic traffic simulation
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 67)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Vol 14 (1) ◽  
pp. 474
Author(s):  
Xiaoyuan Wang ◽  
Shijie Liu ◽  
Huili Shi ◽  
Hui Xiang ◽  
Yang Zhang ◽  
...  

Lane Utilization Ratio (LUR), affected by lane selection behavior directly, represents the traffic distribution on different lanes of road section for a single direction. The research on LUR, especially under Penetration Conditions of Connected and Automated Vehicles (PCCAV), is not comprehensive enough. Considering the difficulty in the conduction of real vehicle experiment and data collection under PPCAV, the lane selection model based on phase-field coupling and set pair logic, which considers the full-information of lanes, was used to carry out microscopic traffic simulation. From the analysis of microsimulation results, the basic relationships between Penetration of Connected and Automated Vehicles (PCAV), traffic volume, and Lane-Changing Times, also that between PCAV, traffic volume, and LUR in the basic section of the urban expressway were studied. Moreover, the influence of driving propensity on the effect of PCAVs was also studied. The research results could enrich the traffic flow theory and provide the theoretical basis for traffic management and control.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wei-Jie Xiu ◽  
Li Wang ◽  
Meng-Yang Guo ◽  
Li-Li Zhang ◽  
Qi Zhao

Dedicated bus lanes (DBLs) have been widely utilized to ensure public transport priority. To improve overall road efficiency, various control methods of multiplexing DBL are developed and discussed. In this study, we focus on the control method which is based on the connected-automated vehicle (CAV) technology, and the proposed method is validated by using microscopic traffic simulation. The simulation results show that two proposed control methods of multiplexing DBL can reduce the average delay and the average number of stops and increase the travel speed. In comparison, the real-time control method based on the CAV technology offers better effects than the improved signal light control method.


2021 ◽  
Vol 1 ◽  
pp. 100018
Author(s):  
Mánuel Gressai ◽  
Balázs Varga ◽  
Tamás Tettamanti ◽  
István Varga

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shenzhen Ding ◽  
Xumei Chen ◽  
Zexin Fu ◽  
Fei Peng

The development of connected and autonomous vehicle (CAV) technology has received increasing attention in recent years. Although car-following behavior in mixed traffic with CAVs and human-driven vehicles (HDVs) is a core component of microscopic traffic simulation, intelligent traffic systems, etc., the current study of car-following behavior in mixed traffic has some limitations. Furthermore, actual data do not support its applicability to the Chinese traffic environment. To address this gap, this paper designs and organizes a car-following experiment in mixed traffic in Beijing, extracts the trajectory data of CAVs and HDVs based on video recognition, and reconstructs the extracted trajectory data using the Lagrangian theory and Kalman filter theory to ensure the accuracy of the data. Based on this data set, this paper develops an extended car-following model. The model considers the cooperation between drivers by reformulating the prospect theory (PT). The root mean square percentage error (RMSPE) is selected to calibrate and validate the parameters of the proposed model, and the results show that there is significant heterogeneity between CAVs and HDVs in mixed traffic, and the proposed model captures this heterogeneity well. The model presented in this paper provides theoretical support for microscopic traffic simulation in mixed traffic.


Author(s):  
Xuan Fang ◽  
Tamás Tettamanti

It is believed that autonomous vehicles will replace conventional human drive vehicles in the next decades due to the emerging autonomous driving technology, which will definitely bring a massive transformation in the road transport sector. Due to the high complexity of traffic systems, efficient traffic simulation models for the assessment of this disruptive change are critical. The objective of this paper is to justify that the common practice of microscopic traffic simulation needs thorough revision and modification when it is applied with the presence of autonomous vehicles in order to get realistic results. Two high-fidelity traffic simulators (SUMO and VISSIM) were applied to show the sensitivity of microscopic simulation to automated vehicle’s behavior. Two traffic evaluation indicators (average travel time and average speed) were selected to quantitatively evaluate the macro-traffic performance of changes in driving behavior parameters (gap acceptance) caused by emerging autonomous driving technologies under different traffic demand conditions.


2021 ◽  
Vol 13 (14) ◽  
pp. 8076
Author(s):  
Bernice Liu ◽  
Amirarsalan Mehrara Molan ◽  
Anurag Pande ◽  
Jonathan Howard ◽  
Serena Alexander ◽  
...  

Urban street networks in the United States have been primarily designed for automobile traffic with negligible considerations to non-motorized transportation users. Due to environmental issues and quality of life concerns, communities are reclaiming street spaces for active modes and slowing the speeds in their downtown. Moreover, tactical urbanism, i.e., the use of street space for innovative purposes other than moving automobile traffic, is becoming attractive due to reduced automobile travel demand and the need for outdoor activities in the age of the COVID-19 pandemic. This study provides details of the modeling of an urban downtown network (in the City of San Jose) using microscopic traffic simulation. The model is then applied to evaluate the effectiveness of street design changes at varying demand scenarios. The microsimulation approach was chosen because it allows for the detailed modeling and visualization of the transportation networks, including movements of individual vehicles, bicyclists, and pedestrians. The street design change demonstrated here involves one-way to two-way street conversion, but the framework of network-wide impact evaluation may also be used for complete street conversions. The base conditions network was also tested under different travel demand reduction scenarios (10%, 20%, and 30%) to identify the corridors in the city network in which the tactical urbanism strategies (e.g., open-air dining) may be best accommodated. The study provides framework for the use of a microscopic model as part of a decision support system to evaluate and effectively implement complete streets/tactical urbanism strategies.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1563
Author(s):  
Kathryn L. Knight ◽  
Guangyang Hou ◽  
Aditi S. Bhaskar ◽  
Suren Chen

Green stormwater infrastructure (GSI) is increasingly used to reduce stormwater input to the subsurface stormwater network. This work investigated how GSI interacts with surface runoff and stormwater structures to affect the spatial extent and distribution of roadway flooding and subsequent effects on the performance of the traffic system using a dual-drainage model. The model simulated roadway flooding using PCSWMM (Personal Computer Stormwater Management Model) in Harvard Gulch, Denver, Colorado, and was then used in a microscopic traffic simulation using the Simulation of Urban Mobility Model (SUMO). We examined the effect of converting between 1% and 5% of directly connected impervious area (DCIA) to bioretention GSI on roadway flooding. The results showed that even for 1% of DCIA converted to GSI, the extent and mean depth of roadway flooding was reduced. Increasing GSI conversion further reduced roadway flooding depth and extent, although with diminishing returns per additional percentage of DCIA converted to GSI. Reduced roadway flooding led to increased average vehicle speeds and decreased percentage of roads impacted by flooding and total travel time. We found diminishing returns in the roadway flooding reduction per additional percentage of DCIA converted to GSI. Future work will be conducted to reduce the main limitations of insufficient data for model validation. Detailed dual-drainage modeling has the potential to better predict what GSI strategies will mitigate roadway flooding.


Sign in / Sign up

Export Citation Format

Share Document