scholarly journals Towards Effective Detection of Recent DDoS Attacks: A Deep Learning Approach

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ivandro Ortet Lopes ◽  
Deqing Zou ◽  
Francis A Ruambo ◽  
Saeed Akbar ◽  
Bin Yuan

Distributed Denial of Service (DDoS) is a predominant threat to the availability of online services due to their size and frequency. However, developing an effective security mechanism to protect a network from this threat is a big challenge because DDoS uses various attack approaches coupled with several possible combinations. Furthermore, most of the existing deep learning- (DL-) based models pose a high processing overhead or may not perform well to detect the recently reported DDoS attacks as these models use outdated datasets for training and evaluation. To address the issues mentioned earlier, we propose CyDDoS, an integrated intrusion detection system (IDS) framework, which combines an ensemble of feature engineering algorithms with the deep neural network. The ensemble feature selection is based on five machine learning classifiers used to identify and extract the most relevant features used by the predictive model. This approach improves the model performance by processing only a subset of relevant features while reducing the computation requirement. We evaluate the model performance based on CICDDoS2019, a modern and realistic dataset consisting of normal and DDoS attack traffic. The evaluation considers different validation metrics such as accuracy, precision, F1-Score, and recall to argue the effectiveness of the proposed framework against state-of-the-art IDSs.

2020 ◽  
Vol 184 ◽  
pp. 01052
Author(s):  
M Arshi ◽  
MD Nasreen ◽  
Karanam Madhavi

The DDoS attacks are the most destructive attacks that interrupt the safe operation of essential services delivered by the internet community’s different organizations. DDOS stands for Distributed Denial Of Service attacks. These attacks are becoming more complex and expected to expand in number day after day, rendering detecting and combating these threats challenging. Hence, an advanced intrusion detection system (IDS) is required to identify and recognize an- anomalous internet traffic behaviour. Within this article the process is supported on the latest dataset containing the current form of DDoS attacks including (HTTP flood, SIDDoS). This study combines well-known grouping methods such as Naïve Bayes, Multilayer Perceptron (MLP), and SVM, Decision trees.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Özge Cepheli ◽  
Saliha Büyükçorak ◽  
Güneş Karabulut Kurt

Distributed denial-of-service (DDoS) attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS), for detection of DDoS attacks. Our proposed detection system makes use of both anomaly-based and signature-based detection methods separately but in an integrated fashion and combines the outcomes of both detectors to enhance the overall detection accuracy. We apply two distinct datasets to our proposed system in order to test the detection performance of H-IDS and conclude that the proposed hybrid system gives better results than the systems based on nonhybrid detection.


2020 ◽  
Vol 10 (1) ◽  
pp. 220-230
Author(s):  
Shubhra Dwivedi ◽  
Manu Vardhan ◽  
Sarsij Tripathi

AbstractDistributed denial-of-service (DDoS) attacks on the Internet of Things (IoT) pose a serious threat to several web-based networks. The intruder’s ability to deal with the power of various cooperating devices to instigate an attack makes its administration even more multifaceted. This complexity can be further increased while lots of intruders attempt to overload an attack against a device. To counter and defend against modern DDoS attacks, several effective and powerful techniques have been used in the literature, such as data mining and artificial intelligence for the intrusion detection system (IDS), but they have some limitations. To overcome the existing limitations, in this study, we propose an intrusion detection mechanism that is an integration of a filter-based selection technique and a machine learning algorithm, called information gain-based intrusion detection system (IGIDS). In addition, IGIDS selects the most relevant features from the original IDS datasets that can help to distinguish typical low-speed DDoS attacks and, then, the selected features are passed on to the classifiers, i.e. support vector machine (SVM), decision tree (C4.5), naïve Bayes (NB) and multilayer perceptron (MLP) to detect attacks. The publicly available datasets as KDD Cup 99, CAIDA DDOS Attack 2007, CONFICKER worm, and UNINA traffic traces, are used for our experimental study. From the results of the simulation, it is clear that IGIDS with C4.5 acquires high detection and accuracy with a low false-positive rate.


Author(s):  
Shideh Saraeian ◽  
Mahya Mohammadi Golchi

Comprehensive development of computer networks causes the increment of Distributed Denial of Service (DDoS) attacks. These types of attacks can easily restrict communication and computing. Among all the previous researches, the accuracy of the attack detection has not been properly addressed. In this study, deep learning technique is used in a hybrid network-based Intrusion Detection System (IDS) to detect intrusion on network. The performance of the proposed technique is evaluated on the NSL-KDD and ISCXIDS 2012 datasets. We performed traffic visual analysis using Wireshark tool and did some experimentations to prove the superiority of the proposed method. The results have shown that our proposed method achieved higher accuracy in comparison with other useful machine learning techniques.


2021 ◽  
Author(s):  
Kathiroli Raja ◽  
Krithika Karthikeyan ◽  
Abilash B ◽  
Kapal Dev ◽  
Gunasekaran Raja

Abstract The Industrial Internet of Things (IIoT), also known as Industry 4.0, has brought a revolution in the production and manufacturing sectors as it assists in the automation of production management and reduces the manual effort needed in auditing and managing the pieces of machinery. IoT-enabled industries, in general, use sensors, smart meters, and actuators. Most of the time, the data held by these devices is surpassingly sensitive and private. This information might be modified,
1
stolen, or even the devices may be subjected to a Denial of Service (DoS) attack. As a consequence, the product quality may deteriorate or sensitive information may be leaked. An Intrusion Detection System (IDS), implemented in the network layer of IIoT, can detect attacks, thereby protecting the data and devices. Despite substantial advancements in attack detection in IIoT, existing works fail to detect certain attacks obfuscated from detectors resulting in a low detection performance. To address the aforementioned issue, we propose a Deep Learning-based Two Level Network Intrusion Detection System (DLTL-NIDS) for IIoT environment, emphasizing challenging attacks. The attacks that attain low accuracy or low precision in level-1 detection are marked as challenging attacks. Experimental results show that the proposed model, when tested against TON IoT, figures out the challenging attacks well and achieves an accuracy of 99.97%, precision of 95.62%, recall of 99.5%, and F1-score of 99.65%. The proposed DL-TLNIDS, when compared with state-of-art models, achieves a decrease in false alarm rate to 2.34% (flagging normal traffic as an attack) in IIoT.


2021 ◽  
Author(s):  
◽  
Abigail Koay

<p>High and low-intensity attacks are two common Distributed Denial of Service (DDoS) attacks that disrupt Internet users and their daily operations. Detecting these attacks is important to ensure that communication, business operations, and education facilities can run smoothly. Many DDoS attack detection systems have been proposed in the past but still lack performance, scalability, and information sharing ability to detect both high and low-intensity DDoS attacks accurately and early. To combat these issues, this thesis studies the use of Software-Defined Networking technology, entropy-based features, and machine learning classifiers to develop three useful components, namely a good system architecture, a useful set of features, and an accurate and generalised traffic classification scheme. The findings from the experimental analysis and evaluation results of the three components provide important insights for researchers to improve the overall performance, scalability, and information sharing ability for building an accurate and early DDoS attack detection system.</p>


2019 ◽  
Vol 8 (4) ◽  
pp. 4668-4671

A Distributed denial of Service attacks(DDoS) is one of the major threats in the cyber network and it attacks the computers flooded with the Users Data Gram packet. These types of attacks causes major problem in the network in the form of crashing the system with large volume of traffic to attack the victim and make the victim idle in which not responding the requests. To detect this DDOS attack traditional intrusion detection system is not suitable to handle huge volume of data. Hadoop is a frame work which handles huge volume of data and is used to process the data to find any malicious activity in the data. In this research paper anomaly detection technique is implemented in Map Reduce Algorithm which detects the unusual pattern of data in the network traffic. To design a proposed model, Map Reduce platform is used to hold the improvised algorithm which detects the (DDoS) attacks by filtering and sorting the network traffic and detects the unusual pattern from the network. Improvised Map reduce algorithm is implemented with Map Reduce functionalities at the stage of verifying the network IPS. This Proposed algorithm focuses on the UDP flooding attack using Anomaly based Intrusion detection system technique which detects kind of pattern and flow of packets in the node is more than the threshold and also identifies the source code causing UDP Flood Attack.


Information ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 106 ◽  
Author(s):  
Pedro Manso ◽  
José Moura ◽  
Carlos Serrão

The current paper addresses relevant network security vulnerabilities introduced by network devices within the emerging paradigm of Internet of Things (IoT) as well as the urgent need to mitigate the negative effects of some types of Distributed Denial of Service (DDoS) attacks that try to explore those security weaknesses. We design and implement a Software-Defined Intrusion Detection System (IDS) that reactively impairs the attacks at its origin, ensuring the “normal operation” of the network infrastructure. Our proposal includes an IDS that automatically detects several DDoS attacks, and then as an attack is detected, it notifies a Software Defined Networking (SDN) controller. The current proposal also downloads some convenient traffic forwarding decisions from the SDN controller to network devices. The evaluation results suggest that our proposal timely detects several types of cyber-attacks based on DDoS, mitigates their negative impacts on the network performance, and ensures the correct data delivery of normal traffic. Our work sheds light on the programming relevance over an abstracted view of the network infrastructure to timely detect a Botnet exploitation, mitigate malicious traffic at its source, and protect benign traffic.


2020 ◽  
Vol 167 ◽  
pp. 2297-2307 ◽  
Author(s):  
Karan B. Virupakshar ◽  
Manjunath Asundi ◽  
Kishor Channal ◽  
Pooja Shettar ◽  
Somashekar Patil ◽  
...  

Author(s):  
Ahmad Azhari ◽  
Arif Wirawan Muhammad ◽  
Cik Feresa Mohd Foozy

Distributed Service Denial (DDoS) is a type of network attack, which each year increases in volume and intensity.  DDoS attacks also form part of the major types of cyber security threats so far. Early detection plays a key role in avoiding the catastrophic effects on server infrastructure from DDoS attacks. Detection techniques in the traditional Intrusion Detection System (IDS) are far from perfect compared to a number of modern techniques and tools used by attackers, because the traditional IDS only uses signature-based detection or anomaly-based detection models and causes a lot of false positive flags, since the flow of computer network data packets has complex properties in terms of both size and source. Based on the  deficiency in the ordinary IDS, this study aims to detect DDoS attacks by using machine learning techniques to enhance IDS policy development.  According to the experiment the selection of features plays an important role in the precision of the detection results and in the performance of machine learning in classification problems. The combination of seven key selected dataset features used as an input neural network classifier in this study provides the highest accuracy value at 97.76%.


Sign in / Sign up

Export Citation Format

Share Document