International Journal of Artificial Intelligence Research
Latest Publications


TOTAL DOCUMENTS

57
(FIVE YEARS 30)

H-INDEX

4
(FIVE YEARS 1)

Published By Stmik Dharma Wacana

2579-7298

Author(s):  
Larissa Navia Rani ◽  
Sarjon Defit ◽  
L. J. Muhammad

The large number of courses offered in an educational institution raises new problems related to the selection of specialization courses. Students experience difficulties and confusion in determining the course to be taken when compiling the study plan card. The purpose of this study was to cluster student value data. Then the values that have been grouped are seen in the pattern (pattern) of the appearance of the data based on the values they got previously so that students can later use the results of the patterning as a guideline for taking what skill courses in the next semester. The method used in this research is the K-Means and FP-Growth methods. The results of this rule can provide input to students or academic supervisors when compiling student study plan cards. Lecturers and students can analyze the right specialization subject by following the pattern given. This study produces a pattern that shows that the specialization course with the theme of business information systems is more followed by students than the other 2 themes


Author(s):  
Ika Candradewi ◽  
Agus Harjoko ◽  
Bakhtiar Alldino Ardi Sumbodo

In the automation of vehicle traffic monitoring system, information about the type of vehicle, it is essential because used in the process of further analysis as management of traffic control lights. Currently, calculation of the number of vehicles is still done manually. Computer vision applied to traffic monitoring systems could present data more complete and update.In this study consists of three main stages, namely Classification, Feature Extraction, and Detection. At stage vehicle classification used multi-class SVM method to evaluate characteristics of the object into eight classes (LV-TK, LV-Mobil, LV-Mikrobis, MHV-TS, MHV-BS, HV-LB, HV- LT, MC). Features are obtained from the detection object, processed on the feature extraction stage to get features of geometry, HOG, and LBP in the detection stage of the vehicle used MOG method combined with HOG-SVM to get an object in the form of a moving vehicle and does not move. SVM had the advantage of detail and based statistical computing. Geometry, HOG, and LBP characterize complex and represents an object in the form of the gradient and local histogram.The test results demonstrate the accuracy of the calculation of the number of vehicles at the stage of vehicle detection is 92%, with the parameters HOG cellSize 4x4, 2x2 block size, the son of vehicle classification 9. The test results give the overall mean recognition rate 91,31 %, mean precision rate 77,32 %, and mean recall rate 75,66 %. 


Author(s):  
Christantie Effendy ◽  
Nurhaeka Tou ◽  
Ridho Rahmadi

The growth of the elderly population in Indonesia from year to year has always increased, followed by the problem of decreasing physical strength and psychological health of the elderly. These problems can affect the increase in dependence and decrease the independence of the elderly in ADL. In previous studies, various factors affect independence in ADLs such as cognitive, psychological, economic, nutrition, and health. However, In general, these studies only focus on predictive analysis or correlation of variables, and no research has attempted to identify the casual relationship of the elderly independence factors. Therefore, this study aimed to determine the mechanism of the causal relationship of the factors that influence the independence of the elderly in ADLs using a casual method called the Stable Specification Search for Cross-Sectional Data With Latent Variables (S3C-Latent). In this research we found strong causal and associative relationships between factors.The causal relationship of elderly independence in ADLs was influenced by cognitive, psychological, nutritional and health factors and gender with α values respectively (0.61; 0.61;1.00, 0.65;0.70). Cognitive factors associated with psychological, economic, nutrition, and health with a value of α (0.77; 1.00; 1.00; 0.64). Furthermore, psychological factors associated with economy, nutrition, and health with a value of α (0.77; 0.95; 0.63). Bisides, economic factors are associated with nutrition and health with α values of ( 0.86; 0.75) and nutrition with health with α values of 0.64. The last association was found between nutritional factors and gender with a value of α 0.76. This research is expected to increase the independence of the elderly in carrying out daily activities.


Author(s):  
Davin Wijaya ◽  
Jumri Habbeyb DS ◽  
Samuelta Barus ◽  
Beriman Pasaribu ◽  
Loredana Ioana Sirbu ◽  
...  

Employee turnover is the loss of talent in the workforce that can be costly for a company. Uplift modeling is one of the prescriptive methods in machine learning models that not only predict an outcome but also prescribe a solution. Recent studies are focusing on the conventional predictive models to predict employee turnover rather than uplift modeling. In this research, we analyze whether the uplifting model has better performance than the conventional predictive model in solving employee turnover. Performance comparison between the two methods was carried out by experimentation using two synthetic datasets and one real dataset. The results show that despite the conventional predictive model yields an average prediction accuracy of 84%; it only yields a success rate of 50% to target the right employee with a retention program on the three datasets. By contrast, the uplift model only yields an average accuracy of 67% but yields a consistent success rate of 100% in targeting the right employee with a retention program.


Author(s):  
Ahmad Chusyairi ◽  
Pelsri Ramadar Noor Saputra

In Indonesia, public health services at the city or district level are carried out by regional public hospitals or “puskesmas” (health care centers), especially in Banyuwangi regency, East Java, Indonesia that has 45 health care centers spread throughout the villages. This research focused on the deaths of babies caused by diarrhea diseases, which are the second leading cause of death among children younger than 5 years globally. All of the health care centers need to be divided into 3 groups to find out which health care centers have the least, most moderate, and many diarrhea sufferers. Fuzzy C-Means algorithm is used to overcome this problem. The result from this research shown that 2 health care centers have the smallest member of diarrhea sufferers, 14 health care centers have a medium member of diarrhea sufferers, and the rest have a large number of diarrhea sufferers. From the result of this study, it can be a reference for the health department center in dealing with diarrheal diseases, accordingly, the infant mortality rate due to diarrheal diseases can be lowered to health care centers that have high diarrhea sufferers.


Author(s):  
Alex Sumarsono ◽  
Farnaz Ganjeizadeh ◽  
Ryan Tomasi

Hyperspectral imagery (HSI) contains hundreds of narrow contiguous bands of spectral signals. These signals, which form spectral signatures, provide a wealth of information that can be used to characterize material substances. In recent years machine learning has been used extensively to classify HSI data. While many excellent HSI classifiers have been proposed and deployed, the focus has been more on the design of the algorithms. This paper presents a novel data preprocessing method (LRSP) to improve classification accuracy by applying stochastic perturbations to the low-rank constituent of the dataset. The proposed architecture is composed of a low-rank and sparse decomposition, a degradation function and a constraint least squares filter. Experimental results confirm that popular state-of-the-art HSI classifiers can produce better classification results if supplied by LRSP-altered datasets rather than the original HSI datasets. 


Author(s):  
Mustofa Kamil ◽  
Ankur Singh Bist ◽  
Untung Rahardja ◽  
Nuke Puji Lestari Santoso ◽  
Muhammad Iqbal

The current situation of the Covid-19 pandemic is currently increasing public concern about the community. The government has especially recommended Stay at Home and the implementation of PSBB in various regions. One of the concerns is when the election of regional leaders to the general chairman. Even though there is already a safeguard regulation, this is not considered safe in the current Covid-19 pandemic. The solution in this research is the use of a blockchain-based E-voting system to help tackle election unrest during Covid-19. Where e-voting with blockchain technology can be carried out anywhere through the device without the need to be present in the voting booth, reducing data fraud, accurate and decentralized voting results that can be accessed by the public in real-time. The use of cryptographic protocols is applied for data transfer between system components as well as valid system security. This research method uses SUS trial analysis in a significant system of the Covid-19 pandemic situation. The implication that the SUS Score analysis shows 90 shows an acceptable E-voting system, meaning that the community can accept it because it brings positive and significant impacts such as effectiveness and efficiency.


2021 ◽  
Vol 4 (2) ◽  
pp. 117
Author(s):  
Harwikarya Harwikarya ◽  
Sabar Rudiarto ◽  
Glorin Sebastian

Pulse Coupled Neural Network (PCNN) is claimed as a third generation neural network. PCNN has wide purpose in image processing  such as segmentation, feature extraction, sharpening etc.  Not like another neural network architecture, PCNN do not need training. The only weaknes point  of PCNN is parameter tune due to  seven parameters in its five equations. In this research we proposed a novel method for segmentation based on modified PCNN.  In order to evaluate the proposed method, we processed L Band Multipolarisation  Synthetic Apperture Radar Image. The Results showed all area extracted both by using PCNN and ICM-PCNN from the SAR image are match to the groundtruth. There fore the proposed method is work properly.Copyright © 2017  International Journal of  Artificial Intelegence Research.All rights reserved.


Author(s):  
Basiroh Basiroh ◽  
Shahab Wahhab Kareem

Nowadays technological developments are increasingly having a positive influence on the development of human life, including in the health sector. One of them is an expert system that can transfer an expert's knowledge into a computer application to simplify and speed up the diagnosis of a disorder or disease in humans. The purpose of this final project is to design an application to diagnose diseases that occur during pregnancy which is caused by the existence of these pregnancies to simplify and speed up the diagnosis of diseases experienced by pregnant women. This study uses the forward chaining method. By involving experts in this expert system analysis according to current needs. Users are given easy access to information on several types of pregnancy disorders and their symptoms, as well as consultation through several questions that the user must answer to find out the results of the diagnosis. While experts are facilitated in system management, both the process of adding, updating and, deleting data.


2021 ◽  
Vol 4 (2) ◽  
pp. 127
Author(s):  
Untari Novia Wisesty ◽  
Febryanti Sthevanie ◽  
Rita Rismala

Early detection of cancer can increase the success of treatment in patients with cancer. In the latest research, cancer can be detected through DNA Microarrays. Someone who suffers from cancer will experience changes in the value of certain gene expression.  In previous studies, the Genetic Algorithm as a feature selection method and the Momentum Backpropagation algorithm as a classification method provide a fairly high classification performance, but the Momentum Backpropagation algorithm still has a low convergence rate because the learning rate used is still static. The low convergence rate makes the training process need more time to converge. Therefore, in this research an optimization of the Momentum Backpropagation algorithm is done by adding an adaptive learning rate scheme. The proposed scheme is proven to reduce the number of epochs needed in the training process from 390 epochs to 76 epochs compared to the Momentum Backpropagation algorithm. The proposed scheme can gain high accuracy of 90.51% for Colon Tumor data, and 100% for Leukemia, Lung Cancer, and Ovarian Cancer data.


Sign in / Sign up

Export Citation Format

Share Document